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Abstract

In this deliverable, we present the final, multi-modal people and group detection and tracking system
used in SPENCER. The output of this system is used to guide a group of passengers to their goal at
the airport, but has also been used in experiments as an input for socially compliant motion planning
among groups of people. We briefly recapitulate our work on group detection via coherent motion
indicator features, already mentioned in D2.4, followed by a description of our multi-modal people
tracking system. This system has been evaluated in a series of experiments on both synthetic and
real-world data, including an annotated dataset captured at the actual deployment area of the robot,
Amsterdam-Schiphol airport. The system was tested successfully during the initial deployment at
Amsterdam-Schiphol airport in December 2015, and only minor modifications had to be done for the
final demonstration.

1 Introduction

Recognizing groups and interpreting their behavior are key to the understanding of populated environ-
ments. Therefore, task T2.3 deals with the development of a group detection and tracking framework
that uses people detection and tracking from T2.1 as an input.
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Figure 1: Overview of the data flow from sensor input to people detection and tracking to group de-
tection and tracking. Feedback of group information into people tracking was studied experimentally
in [5], but is not used in the final system deployed on the robot due to computational constraints.

In this deliverable, we first present the multi-modal people tracking framework, which has been
significantly improved after deliverable D2.1 since it is one of the most crucial components running
on the SPENCER robot platform, serving as an input to a series of social navigation modules. We
then present our work on group detection via coherent motion indicator features, and the integration
of all these components via the robot operating system (ROS).

Improvements done after deliverables D2.1 and D2.4

Note that in this deliverable, we do not go into detail into the existing people and group tracking
functionality that was already discussed in the previous deliverables D2.1 (People Detection and
Tracking from Depth and Vision Data) and D2.4 (Group Detection and Tracking from Depth and
Vision Data Early Prototype).

Building on top of these deliverables, the following improvements have been made for D2.5:

• The RGB-D-based person detectors (groundHOG, upper-body detector) by RWTH have been
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Figure 2: Integration of occlusion geodesics [8] into our people tracking framework, showing the
reassignment costmaps for several occluded tracks.

fully integrated with the standalone nearest-neighbor tracker (NNT) by implementing an effi-
cient detection-to-detection fusion scheme.

• We also integrated an additional RGB-D detector from PCL [6] for comparison purposes.

• We spent significant time on tuning the parameters of the NNT, implementing different motion
models and an interacting multiple models filter, and a track initiation logic. As shown in [4]
and [3], using these enhancements, the NNT can outperform much more complex data associa-
tions at only a fraction of the computational cost. For experimental purposes, we also integrated
a recently proposed approach for geometric occlusion handling via occlusion geodesics [8] into
the NNT, as shown in Figure 2.

• We implemented a wrapper for pySMAC1 to allow for automatic tuning of tracker parameters
via sequential model-based parameter optimization (see [4]).

• The entire people and group tracking stack has been tested successfully during the initial de-
ployment at Amsterdam-Schiphol airport in December 2015.

2 Multi-modal people detection and tracking

Building on top of D2.4, where initially only a 2D laser-based people detection and tracking sys-
tem developed by ALU-FR was deployed on the robot in October 2014, this system has now been
integrated and successfully tested with two vision-based detectors from RWTH: A depth-based upper-
body detector, and a monocular vision-based groundHOG detector. Additionally, the existing vision-
based MDL tracker by RWTH has been modified such that it outputs tracked persons in the same

1https://github.com/automl/pysmac
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format, allowing for comparability of the two approaches. A recent comparative study [4] of different
methods on synthetic data and data from a pedestrian area has shown that e.g. a simple nearest-
neighbor tracker can perform similar to, or even better than, an MHT in crowded environments due
to the combinatorial explosion of possible track states.

In our most recent work, [3], we have conducted a comparison of different people tracking sys-
tems on a dataset recorded at the actual deployment area of the robot, Amsterdam-Schiphol airport.
The examined systems include the MHT and NNT by ALU-FR, the MDL tracker by RWTH, and
another variant of NNT used within the STRANDS EU FP7 project.

In a nutshell, our results indicate that:

• More complex data associations (such as MHT or MDL) are not necessarily better than simpler,
less resource-intensive data association methods like NNT.

• Instead, implementation details such as track initiation logic, track deletion or geometric occlu-
sion handling play a very large role.

• The most important factor influencing tracking quality is still the accuracy of the underlying
person detector(s).

• In the sensory setup used in SPENCER, a combination of the close-range RGB-D upper-body
detector, and the 360-degree 2D laser detector prove to be a good combination. As it turns out,
also integrating the groundHOG detector for far-range vision can lead to worse results, as at far
range the geometric accuracy of monocular vision is much lower than the accuracy of 2D laser.

Our (so far unpublished) results from experiments with the occlusion geodesics (Fig. 2), originally
proposed by Possegger et al. [8] for people tracking from overhead video cameras, show that this
extension can help to reduce the number of track mismatches, at the cost of an increased number of
false positives. This trade-off that has to be made, also depends on the particular application scenario
(tracking groups as long as possible e. g. for group guidance, vs. accurate short-term tracking as an
input to social navigation).

3 Group detection and tracking

For group detection, as described in [5, 1], we build a social network graph where the nodes represent
persons and the edge weights the likelihood of a positive social relation between each pair of persons.
Figure 3 (left) shows such a social network graph. The social relation likelihoods are provided by task
T4.3 (Social Relation Analysis), and can e.g. be derived using a probabilistic SVM classifier trained
on coherent motion indicator features (relative distance, relative speed, relative orientation), using a
dataset annotated with groups of pedestrians, as well as single individuals.

The social network graph is rebuilt at every single person tracking cycle. After it has been con-
structed, we perform graph-cutting at a manually specified threshold, to find clusters of persons that
belong together.

The initially studied multi-model MHT [5, 1] is a monolithic tracker that integrates person-level
and group-level tracking. We have proven the usefulness of this approach via established tracking
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Figure 3: A social network graph between tracked persons, which are the nodes of the graph. The
edge weights are to probabilities of positive social relations between each pair of persons, determined
using a probabilistic SVM trained on coherent motion indicator features.

metrics, as it allows us to feed back information from group-level into person-level tracking (by
e. g. adapting person-level occlusion probabilities within groups). However, this approach is also
computationally complex (due to the combinatorial explosion of possible states), and thus requires a
significant amount of CPU power which is usually limited on mobile platforms that also need to run
other (perception) components such as obstacle detection, motion planning or mapping.

Due to the limited number of computational resources on the robot, we have therefore also imple-
mented a significantly less complex stand-alone group tracking module. The group detection occurs
via the same mechanism as described before, leading to a social network graph. Group clusters are
then tracked by either associating group centroids (using a nearest-neighbor filter), or group compo-
sitions, in terms of individual group member IDs (by keeping a memory of previously seen group
configurations). The latter approach has, in qualitative experiments, been shown to be more robust
when group splits and merges happen frequently. For details of the implementation, see [2].

All these modules fully communicate with each other via ROS and can be flexibly combined and
interchanged, so that e. g. also the RWTH vision-based detection and tracking system described in
deliverable D2.1 can be used with this group tracking mechanism.

3.1 Qualitative results

These group tracking approaches have shown to provide valuable input for social navigation in cock-
tail party-like scenarios. They were used as an input to learning socially normative robot navigation
behaviors, in a recent paper [7] that is described more closely in deliverable D5.2. As shown in Fig-
ure 4, the robot DARYL avoids splitting a group of people engaged in a conversation for which the
tracker has estimated a high-probability pair-wise social relation. Without such an estimate, the robot
drives in between the persons still respecting their personal spaces.

However, in real data captured at Amsterdam Schiphol, where people are often in a rush and the
areas are at times very crowded, it is difficult to make out distinct groups even for a human annotator.
But even in those cases where it is possible to discern individual groups, the inter-person distances are
often so small that the SPENCER robot could not pass in between the persons at all, due to its width
of around 85 centimeters plus some safety margin. Therefore, even without any dedicated group
detection and tracking module, the existing obstacle and social compliance layers will already cause
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Figure 4: Experiments with the robot Daryl showing a socially normative behavior in a group of
people. Setup and resulting costmaps are shown side-by-side, darker cells are higher cost, the robot
path is shown in green. Left: two persons engaged in a conversation, the robot drives around them for
social normativeness. Right: two persons without social relation, the robot drives in between them
while respecting their personal spaces. For more details, see deliverable D5.2 and [7].

the robot to not cross in between group members.

Group tracking is, however, useful for the guidance task. In this case, group detection can be
performed at the beginning of the scenario (where the group that is to be guided is standing in front of
the robot), and the group can then be tracked by tracking its individual person tracks (based upon their
IDs). This is sensible, because we still want to keep track of all group members even if one member
temporarily increases the distance to the other group members (e.g. to avoid another person).

Qualitatively, this approach worked fine most of the time during the initial robot deployment
at Amsterdam-Schiphol airport in December 2015. However, sometimes the robot lost track of the
group completely if the group had to pass through very busy and crowded areas, such as the shopping
plaza. In these cases, an appearance-based person reidentification module – which was unfortunately
not within the scope of the project as per the DoW – would have been required, as solely tracking
person trajectories is insufficient in these cases as noted also by human annotators.

We plan to record further quantitative metrics (on how often the guided group was lost and for
how long people have been tracked) during the final robot deployment in March 2016.
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Towards a Robust People Tracking Framework
for Service Robots in Crowded, Dynamic Environments

Timm Linder Fabian Girrbach Kai O. Arras

Abstract— People tracking is an important prerequisite for
socially compliant service robots that operate in human environ-
ments. In this paper, we take this challenge to new extremes by
attempting to robustly track people in a 360-degree field around
the robot in very crowded environments like a busy airport
terminal. As a first contribution, we present a novel multi-
modal people tracking framework that is modular, flexible and
fully integrated with ROS. We believe that our framework
can be of great benefit to researchers as it covers the entire
people tracking pipeline, including powerful visualization and
evaluation tools. Secondly, we present a number of simple
extensions that can make tracking in crowded scenarios more
robust. Finally, we compare our tracking method against a
complex multi-hypothesis tracking system. Our results on real
and synthetic data suggest that it is not the choice of data
association which has the largest impact, but the underlying
models that, for instance, control track initiation, deletion,
and handling of occlusions. By showing that the simpler data
association may be sufficient, we provide reasoning why the
available resources on a resource-constrained mobile robot
might be better spent on other tasks such as higher-level
perception and reasoning.

I. INTRODUCTION

People tracking from a mobile platform in a first-person
perspective has been studied in the robotics and computer
vision communities for over a decade, and provides impor-
tant functionality for assistance and service robots operat-
ing in human environments. It can lay the foundations to
higher-level social processing such as socially aware motion
planning [1], group detection and tracking [2], [3], social
activity detection [4] or general human-robot interaction,
and is crucial in person guidance tasks. The problem has
basically been solved in simple scenarios with only a handful
of persons walking in front of 2D laser [5] or RGB-D sensors
[6], and good progress has been made in semi-crowded
scenarios with 10–15 people simultaneously visible [7]–[10].
Few approaches are multi-modal in nature [11], [12].

However, larger numbers of persons need to be tracked
when the entire 360-degree field of view around the robot
shall be covered using an entire array of sensors, and not
many systems have been evaluated in very complex and
highly dynamic scenarios where over 30 persons can be
present at the same time, such as in a very crowded airport
terminal where our own service robot is going to be deployed
(Fig. 1).

The authors are with the Social Robotics Lab, Dept. of Computer Sci-
ence, University of Freiburg, Germany. http://srl.informatik.uni-freiburg.de,
{linder,arras}@cs.uni-freiburg.de. This work has been partly supported
by the European Commission under contract number FP7-ICT-600877
(SPENCER).

Fig. 1. Typical example of a crowded, highly dynamic situation in an
airport terminal where we want to robustly and efficiently track persons
with our service robot platform depicted on the bottom left.

In this paper, we present a multi-modal, highly modular
and ROS-based people detection and tracking framework
that, to our knowledge, is the most complete publicly avail-
able framework for this purpose, encompassing powerful
visualization components, a group detection and tracking
module, and implementations of different evaluation metrics
for comparison with other approaches. Secondly, we discuss
how a set of relatively simple extensions can make a person
tracking system based upon very efficient nearest-neighbor
(NN) data association more robust in challenging scenarios.
We argue that the choice of data association method only
plays a subordinate role, and what really matters are the
models used to e. g. initiate and terminate tracks, handle
occlusions, and predict human motion. We demonstrate this
in a first set of experiments, where we compare our non-
probabilistic nearest-neighbor method to a proven multi-
hypothesis tracker that is significantly more complex in terms
of implementation, parameter finding, and computational
requirements. Our core tracking algorithm runs at less than
30% CPU load on a single core in complex scenarios, leaving
enough computational resources for higher-level perception
and social reasoning components.

Finally, we present a way of automatically tuning tracking
parameters with regard to multi-target tracking metrics via an
existing hyperparameter optimization library. Even in a sim-
ple NN-based system, there can be over 20 inter-dependent
parameters that can affect tracking performance and require
expert knowledge when tuned manually. These parameters
are often part of noise models which significantly abstract
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Fig. 2. Components and data flow between the 5 processing stages of our people tracking framework. All components are implemented as separate,
reusable ROS modules, incorporating our own and third-party detection modules, tracking performance metrics, and powerful visualization components.
All components, except for the one with dashed outline, are available as open-source.

from the underlying models of reality, and can at times be
even counter-intuitive to use. Therefore, automated parameter
tuning can significantly ease the burden of deploying our
tracking framework in new scenarios.

II. OUR FRAMEWORK

Fig. 2 gives an overview of the main components of our
modular people tracking framework. All of these components
are fully integrated into ROS and will be made publicly
available on GitHub1 at publication of this paper. In the
following, we will briefly describe the most important com-
ponents, starting from the left at the detection layer.

A. Detection

2D laser: For people detection in 2D laser range data, we
have re-implemented a variant of the boosted laser segment
classifier from [13] and integrated it with ROS. After a sep-
arate ROS node has segmented the laser scans using jump-
distance clustering or a more accurate, but computationally
more complex agglomerative hierarchical clustering (AHC),
the detector computes a set of geometric 2D features on each
segment which are then fed to the classifier. An additional
high-recall blob detector which coarsely classifies the same
kind of segments based upon their number of points and
overall width has also been integrated.

We also integrated a publicly available leg detector2 into
our framework, which can provide better results if the sensor
is mounted close to the ground such that both legs are visible
as individual echoes in the laser scan. In our experiments
with the sensor at 70–80 cm height, however, this detector
(after parameter tuning3, with the existing learned model) did
not provide better results than our boosted segment classifier.

Monocular vision and RGB-D: For person detection in
RGB-D, the existing depth template-based upper-body de-
tector described in Jafari et al. [10], which runs in real-time
at 20-30 Hz on the CPU, as well as their CUDA-based,

1https://github.com/spencer-project/spencer_
people_tracking

2http://wiki.ros.org/leg_detector
3With original parameters, the detector had very low recall on our data.

monocular groundHOG detector have been integrated. We
also extended the RGB-D person detector from [14], which
applies a HOG classifier on candidate regions extracted from
a depth-based height map, with GPU acceleration.

Fusing detections: For multi-sensor people tracking, our
framework currently uses a flexible detection-to-detection
fusion scheme configured fully via XML files. This allows
to combine multiple sensor cues even when the particular
tracking algorithm was not specifically designed to receive
detection input from multiple sources. Using greedy nearest-
neighbor association, we first fuse detections from sensors
with overlapping fields of view (e. g. front laser, front
RGB-D) and then aggregate the resulting sets of detections
that do not overlap (e. g. front and rear detections).
All detectors integrated into our framework output detections
which adhere to the same ROS message format. A Detected-
Person comprises a position vector z′ and its uncertainty R′

in a sensor-specific 3D coordinate frame, a scalar detection
confidence, and some meta-data. R′ can, for example, vary
as a function of the person’s distance to the sensor.

B. Tracking
In this section, we describe a new tracking system de-

veloped with robustness and computational efficiency in
mind specifically for deployment on mobile service robots in
crowded environments. Using a relatively cheap set of exten-
sions from the target tracking community to systematically
tackle shortcomings of current systems in such scenarios, we
want to improve robustness without having to resort to multi-
hypothesis tracking methods that are orders of magnitudes
more complex in terms of implementation and computational
requirements.

In our tracking system, detections arrive in their sensor-
specific coordinate frame and are instantaneously trans-
formed into a locally fixed frame (based upon robot odom-
etry) that does not move with the robot. This ensures that
the motion prediction of tracked persons is independent from
the robot’s ego-motion. In the resulting set of measurements
Z = {z1, ..., zn} ⊂ R2, we drop the z coordinate as we
currently only track in 2D world coordinates.



Motion prediction: We predict the target motion by main-
taining an Extended Kalman filter for each individual person.
At our detection rate of around 30 Hz, human motion can
in most scenarios be assumed to be locally linear, leading
to the Nearly Constant Velocity model with state vector
x = [x, ẋ, y, ẏ]T and the transition matrix

F =




1 t 0 0

0 1 0 0

0 0 1 t

0 0 0 1


 (1)

to predict a future state x̂ = Fx, where t is the length
of the tracking cycle. We use additive process noise Q to
account for small changes in the velocity of the human
motion. The process noise level qL varies with the dynamics
of the application scenario:

Q =
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 qL. (2)

Data association: Correctly associating new detections
with existing tracks is crucial for good tracking performance.
On the other hand, recent research [15] suggests that for
people tracking from a mobile platform, with increasing en-
vironment complexity the difference in performance between
various approaches such as Nearest-Neighbor (NN), Joint
Probabilistic Data Association (JPDA) [5] and Probability
Hypothesis Density (PHD) filters [15] diminishes.

Due to the significantly lower complexity that scales well
with the number of tracked persons, we employ different
variations of NN data association. The Global NN approach
solves the complete linear assignment problem between
detections and tracks using the Hungarian method [16] or the
faster Jonkers-Volgenant [17] method, whereas Greedy NN
searches for minima in the cost matrix in a greedy fashion.
For all these approaches we use the Mahalanobis distance
between track prediction and detection as assignment cost.

C. Track post-processing and visualization

Often, higher-level reasoning components are not inter-
ested in all tracks that are maintained internally by the
people tracking system. Therefore, we provide a series of
post-processing modules which filter the output such that it,
for instance, only includes visually confirmed tracks, non-
static persons, the n persons closest to the robot (useful for
human-robot interaction), or a logical combination thereof.
A standalone group detection and tracking module, based
upon the coherent motion indicator features and the social
network graph described in [3], has also been added.

The visualizations in this paper have been generated using
a set of custom and highly configurable plugins for the ROS
visualization tool RViz that are part of our framework.

III. EXTENSIONS FOR MORE ROBUST TRACKING

A. Better motion prediction in dynamic scenarios

We provide a bank of first- and second order motion
models, which cover different aspects of human motion.
The variety of human motion has to be considered espe-
cially in crowded environments, where people are forced
to change their motion according to the dynamics of the
environment, which may lead to sudden stops or curvy
trajectories. In addition to the Nearly Constant Velocity
(CV) model (Eq. 2), the framework comprises the following
motion models: Brownian Motion (Wiener Process), Nearly
Constant Acceleration (CA) and Nearly Coordinated Turn
(CT). Slight random variations of the constant term are
modelled via additive white Gaussian noise. To capture the
variety of human motion, the models may be combined inside
an Interacting Multiple Models filter (IMM), which further
helps to reduce the dependency on the process noise level qL
that strongly influences tracking performance but is a difficult
to configure parameter due to the trade-off between tracking
precision and robustness to sudden maneuvers.

B. Track initiation

Especially in sparse 2D laser range data, false positive
detections can occur at high rates. To reduce the resulting
number of ‘ghost’ tracks, we use a rule-based approach to
confirm track creation. The Track Initiation Logic [18] was
proven to perform well in a statistical and practical analysis
for radar tracking [19]. For a track to be confirmed, it has
to pass a gating step based upon the Euclidean distance
between the measurement z and the current measurement
prediction Hx̂ of the track candidate, as well as a gating test
that restricts the linear velocities to an interval [vmin, vmax].
If vmin > 0, track initiation is restricted to moving targets,
which prevents tracks being created from human-like objects
such as trees or columns. As an extension to the original
method, in each tracker cycle the velocity gating is performed
recursively for each observation with regard to all observa-
tions already associated to the track candidate ci, as shown
in Alg. 1.

C. Track deletion logic

In the base version of our tracking system, we delete
occluded tracks after a fixed number of tracking cycles
ndel if no matching detection could be found. To prevent
possible false alarm tracks from staying in the system for too
long, we add a discrimination between ‘young’ and ‘mature’
tracks, where the latter is a track that over its lifetime has
been matched at least nmat times. In case a young track
is occluded, it is deleted after being without detection for
nyng
del cycles, whereas a mature track is deleted after a larger

number of steps nmat
del > nyng

del without detection.

IV. EXPERIMENTS AND RESULTS

Since the focus of this paper is on tracking, and not
detection, for the purpose of the following experiments we
restrict ourselves to using 2D laser range data. The presented



Algorithm 1: Cascaded logic for track initiation
Data: unmatched detections Zu, initiation candidates C
Params: min. match count nmin, velocity thresholds
Result: new tracks Tnew to be initiated
foreach existing initiation candidate ci ∈ C do

foreach zj ∈ Zu do
Predict next measurement from state of ci
Check distance between prediction and zj
Check velocity between ∀z ∈ Zci and zj
if checks passed then

Zu = Zu \ {zj}
if |Zci | ≥ nmin then

C = C \ {ci}
Add ci to Tnew

else
Add zj to Zci

nmiss,ci
= 0

if ci has no matching detection z ∈ Zu then
nmiss,ci = nmiss,ci + 1
if nmiss,ci

> nmiss, max then
Delete initiation candidate: C = C \ {ci}

foreach zj ∈ Zu do
C = C ∪ new candidate ck with Zck

:= {zj}

tracking method with its extensions is independent of the
sensor modality used for detecting people.

A. Datasets

We evaluate the proposed system on two datasets of
different complexity. Exemplary screenshots are shown in
Fig. 3, with statistics on these two datasets in Table I.
The first one is a popular 2D laser dataset recorded with
a stationary SICK LMS-291 laser scanner at the Main
Station in Freiburg, Germany. The second, new dataset is
significantly more complex in terms of crowd dynamics and
number of tracks within sensor range at a given time. This
dataset has been synthetically generated using a combination
of the pedestrian simulator PedSim, and the robot simulator
Gazebo. Using our ROS wrapper of PedSim4, we have
modelled a scenario similar to the one our service robot
will encounter in an airport terminal (Fig. 1), with large
flows of people moving around corners towards specific
goals, static groups and single persons spread all over the
environment, and other people queuing up. Person interac-
tions are modelled in PedSim using the social force model
after Helbing [20], and pedestrian positions are then fed to
Gazebo to continuously reposition 3D meshes in a scene
in order to generate 2D laser scans via raycasting from a
simulated mobile platform. While this approach obviously
cannot correctly depict reality in all its detail, especially
in terms of background complexity, it allows us to quickly
study different scenarios, robot behaviors, and obtain exact
groundtruth without need for manual annotations.

4https://github.com/srl-freiburg/pedsim_ros

Frame Count Track Count
Dataset Total Annotated Total Avg Max

Main Station 33,204 6,000 160 16.7 27
PedSim 4,965 4,965 90 78.6 90

TABLE I
DATASET STATISTICS

B. Evaluation metrics

A commonly used measure for evaluating multi-object
tracking performance are the CLEAR-MOT metrics [21].
Besides counting false positives (FP), false negatives (FN)
and ID switches (ID), they define an aggregate error measure
called MOT Accuracy (MOTA) as

MOTA = 1−
∑

k(FPk + FNk + IDk)∑
k GTk

,

where k is the tracking cycle index. The optimal MOTA
score is 1.0, and MOTA can reach negative values if the
tracker makes more errors than there are ground truth objects
GT over the entire dataset duration.

As discussed extensively in [22], MOTA scores can
vary between implementations and are dependent on meta-
parameters such as the matching distance threshold θd
and the way in which track hypotheses are assigned to
groundtruth objects. Therefore, it is important to use the same
metrics implementation when comparing different tracking
approaches. While in our previous work [2], the track-
ing metrics were tightly integrated into the tracker, our
framework provides a standalone Python implementation of
CLEAR-MOT metrics as a separate ROS node that can be
used to evaluate any kind of tracking algorithm compati-
ble with our ROS message definitions. In our version, we
compute groundtruth correspondences using a variant of the
Hungarian method based upon Euclidean distances between
object centroids in 2D world coordinates, with θd = 1m.

Although MOTA can give a good impression of overall
tracking performance, it is questionable if it alone can be
a sufficient measure of tracking performance, as it weights
all types of errors equally. Depending on the application
scenario, some errors might have larger consequences (e. g.
switching track IDs in a person guidance scenario). In our
results, we therefore list these error types separately. Our
framework also incorporates an implementation of the OSPA
metrics [23], which we did not use in this work.

C. Experimental setup

All of our experiments were conducted on a high-end
gaming laptop equipped with a quad-core Intel Core i7-
4700 MQ processor and 8 GB of RAM under Ubuntu 14.04
with ROS Indigo. This is the actual computer platform used
for this purpose on our service robot. For all experiments,
we used the same boosted 2D laser segment classifier with
agglomerative hierarchical clustering at a linkage threshold
of 0.2m, pre-trained on annotated data from a SICK LMS-
291 laser scanner at 75 cm height. We output detections with



Fig. 3. Example groundtruth tracks of the datasets used in our experiments, and originating laser endpoints (in grey). Left: Freiburg Main Station dataset,
recorded with a stationary LMS 291 laser scanner. The camera image is only for visualization purposes. Right: Synthetic dataset generated by combining the
pedestrian simulator PedSim with Gazebo to simulate 2D laser range data via raycasting (small pictures). Our simulation is modelled after a highly crowded,
real airport scenario where people disembark from an airplane and enter the airport terminal. The simulated robot is driving through the 30m×30m scene
for exploration and equipped with two laser scanners at 70 cm height.

a fixed position uncertainty of R = diag(0.1, 0.1) up to a
maximum range of 20m, after which laser echoes become
very sparse and often consist of less than 3 points.

As an additional baseline method for comparison, we use
a variant of the multi-hypothesis tracker (MHT) after Reid
et al. [24] and Cox & Hingorani [25] with explicit occlusions
labels [26]. We use n-scanback pruning with n = 30 and
limit the maximum time tmax per tracking cycle in which an
arbitrary number of hypotheses may be generated to 0.03s.
The EKF parameters for the CV motion model are identical
to the ones used for the NNT. The probabilities pdet, pocc,
pdel are 0.7, 0.27 and 0.03 as in [2]. The poisson rates
for new tracks and false alarms were hand-tuned on our
scenarios to λnew = 0.005 and λfal = 0.005. We additionally
enforce occluded tracks to be deleted after at most 10 cycles
without detection, as they otherwise stay in the system for
too long, leading to extremely bad MOTA scores in the very
dynamic PedSim scenario.

D. Parameter tuning
Finding the correct parameter configuration is crucial to

achieve good tracking results. Even in a simple NN-based
system, there can be over 15 inter-dependent, performance-
relevant parameters that often require expert knowledge for
manual tuning. In particular, our experience is that i) the
process noise level qL, ii) the measurement covariances R,
iii) track initiation- and iv) track deletion thresholds can have
a high performance impact and are difficult to estimate.

We therefore integrated pySMAC5, a Python wrapper for
the hyperparameter optimization tool SMAC [27], with our
extended NN tracker to identify well-performing parameter
sets. SMAC allows to define categorical, integer and float
parameter ranges and boundary conditions to be met. It uses
a given performance metric, in our case MOTA, to fit a
surrogate model in the form of a random forest. The model
is used for prediction of promising configurations, which are
then optimized using a combination of Bayesian optimization
and local search.

V. RESULTS

Table II shows tracking performance results of our ex-
tended NNT as well as the MHT baseline on the moderately

5https://github.com/automl/pysmac

crowded Freiburg Main Station and the very crowded PedSim
datasets. We also show quantitative results of our tracking
framework in different scenarios on our YouTube channel6.

A. Data association

The results for the different data association methods,
namely NN with multiple associations per detection, Global
NN and Greedy NN, show that the sub-optimal solution of
the assignment problem of the greedy method yields nearly
the same results as the optimal solution found by applying
the Jonkers-Volgenant [17] algorithm for the optimal solu-
tion. The NN variant that allows a detection to be assigned
to multiple tracks yields higher results in MOTA, but also a
higher number of ID switches. This can be explained by
the fact that a track with a missing detection converges
towards its nearest neighbor, which after a number of missed
detections results in a track duplicate.

B. Track initiation logic

The track initiation logic by itself drastically reduces the
FP rate by around half, but also leads to an increased miss
rate for three different reasons. First, by requiring at least
nmin = 6 matches in our case for a track confirmation, each
track’s appearance is delayed by the same number of tracking
cycles. Second, for targets outside of our velocity boundaries
of [vmin, vmax] := [0.2, 2], such as static persons, no tracks
are initiated. Lastly, for targets that only infrequently trig-
ger a detection, the number of consecutive allowed misses
nmiss, max might be too low.

C. Track deletion logic

Our track deletion logic has been tuned to delete young
tracks after nyng

del = 20 cycles and mature tracks after
nyng
del = 50 cycles. A track is being considered mature after

at least nmat = 100 matches. As can be seen from the
results in Table II, this initially leads to a worse MOTA score
compared to the baseline NN tracker due to the increase in
false positives, as certain tracks are now allowed to survive
for a longer time compared to the case without deletion logic
where they are already deleted after ndel = 5 cycles.

However, once deletion and initiation logic are combined,
the overall MOTA score increases because the two extensions

6https://youtube.com/spencereuproject



Main Station dataset
Method MOTA ID FP% Miss% Hz

Global NN 71.9% 1280 8.4% 18.6% 6997
Greedy NN, multi-association 70.7% 1439 9.8% 18.3% 6766
Greedy NN 71.9% 1279 8.4% 18.6% 6976
+Extended initiation logic 67.2% 781 2.5% 30.0% 7069
+Deletion logic 66.7% 463 20.1% 12.7% 5732

+Base initiation logic 72.6% 274 6.6% 20.1% 6816
+Extended initiation logic 73.3% 306 7.2% 19.3% 6472

+IMM (CV + CV) 73.3% 311 7.2% 19.3% 3433
MHT tmax = 0.03s 72.2% 815 9.4% 17.4% 33

PedSim dataset
MOTA ID FP% Miss% Hz

80.4% 4962 12.4% 5.7% 1323
78.8% 5627 14.1% 5.5% 1403
80.5% 4968 12.4% 5.7% 1061
78.9% 3112 4.9% 15.3% 1260
71.1% 1842 25.0% 3.3% 747
80.8% 1234 9.1% 9.6% 1025
82.2% 1315 9.4% 7.9% 935
82.2% 1272 9.4% 8.0% 606
71.3% 3670 23.0% 4.8% 32

TABLE II
TRACKING PERFORMANCE COMPARISON

augment each other well. Combining the two, MOTA on
the Main Station dataset rises from 71.9% to 73.3%, with
an impressive reduction in ID switches from 1279 to 306.
Similarly on the PedSim dataset, the number of ID switches
is reduced by around 75%. Here, the extended version of the
track initiation logic that recursively performs velocity gating
against all previous detections that were already associated
with the candidate, achieves 0.7-1.4% higher MOTA scores
than the basic version which just performs velocity gating
on the latest associated detection.

D. IMM

The IMM results in Table II were achieved using two CV
models with different process noise levels qL1

= 0.035 and
qL2

= 0.267. The parameters and the overall choice of mo-
tion models were found by automatic parameter optimization
via PySMAC. While MOTA did not improve by adding the
IMM, the number of ID switches went down slightly by
3.6% on the more challenging PedSim dataset. Additional
qualitative experiments in our lab, where multiple persons
interacted with our robot in a narrow environment, showed
a reduction in track losses and subsequent ID switches. We
believe that in such human-robot interaction scenarios, the
IMM can lead to more obvious improvements, because the
human subjects often try to ‘play’ with the robot and trick the
tracking system into errors by performing erratic maneuvers.
This happens less often in our recorded datasets, which do
not include explicit human-robot interactions and therefore
contain fewer sharp turns and persons stopping abruptly.

E. Comparison to other systems

Compared to the baseline nearest-neighbor tracker, the
hypothesis-oriented MHT [26] – as expected – achieves
better scores on the Main Station dataset7. On the highly
challenging PedSim dataset, however, the MHT underper-
forms even after carefully tuning its parameters. We believe
this to be due to the combinatorial explosion of possible
data associations given the high track count8. This would

7These results are 8% worse than the baseline results reported in [2],
because we track targets up to a maximum range of 20 meters (instead of
12m) and due to use of a different CLEAR-MOT implementation.

8In [26], for only four tracks up to 1000 hypotheses are generated.

necessitate a very high number of hypotheses, which is
infeasible to maintain within the given cycle time limit of
30 ms. No improvement could be achieved by further raising
the cycle limit to e. g. 100 ms.

Compared to the NNT with all extensions, the bare MHT
performs 1% worse on the Main Station dataset, but 11%
worse on the PedSim data. We believe the higher number of
ID switches in MHT output, compared to the NNT, is due
to frequent switching of the global best hypothesis. This is a
well-known problem in multi-hypothesis tracking that is not
straightforward to solve. For the sake of fairness, we want to
note that we would expect tracking performance to increase
by several percent if extensions such as the track initiation
logic from Sec. V-B were also incorporated into the MHT.

F. Runtime performance

In the last column of Table II, we show the median of
the extrapolated processing rates of the tracking algorithms
based upon actually measured cycle times (without taking the
detection stage into account). All methods have been hand-
optimized for runtime performance. For an equal compari-
son, and with the application scenario of the service robot
with limited on-board processing capabilities in mind, we
restrict the tracker’s CPU usage to a single thread.

It can be seen that the NNT, even with our extensions,
is extremely efficient due to its simplicity, being able to
theoretically process over 5000 tracking cycles per second
in moderately crowded scenarios (Main Station), and still
over 600 in very crowded scenarios (PedSim). The entire
tracking framework, with 2 separate laser detectors for front
and rear, runs in real-time at 35 Hz on our robot platform,
with the tracker itself consuming less than 30% of a single
CPU core even in crowded scenarios.

Looking at the cycle rates of the basic NNT on the PedSim
dataset, which are in the order of around 1000 Hz, it easily
becomes apparent why in such highly crowded scenarios
with over 30 tracks in sensor range at a time, a hypothesis-
oriented multi-hypothesis approach cannot succeed without
massive parallelization. Since in the MHT, the data asso-
ciation step performed by the NNT needs to be repeated
for every single hypothesis, we cannot expect more than
1000Hz : 500 hyp. ≈ 2Hz on a single CPU core assuming



we want to generate at least 500 hypotheses. Even on a
processor capable of executing 8 threads in parallel, the
expected frame rate would drop below 20 Hz without yet
running any detection or higher-level perception components.

VI. CONCLUSION

In this paper, we have presented a modular, ROS-based
framework for people tracking in crowded environments.
As we have demonstrated by the integration of multiple
person detectors, some of them from third-party sources,
and two different tracking methods, our framework is easily
extensible. We believe that our framework can be of benefit
to researchers in service and assistance robotics, human-
robot-interaction, and people tracking in particular, as it
covers the entire people tracking pipeline, including powerful
visualization and evaluation tools. Secondly, we have demon-
strated that the choice of data association method matters
less than expected. For practical applications on resource-
constrained service robots, simple data association methods
combined with effective extensions like a track initiation
logic can be a better choice than highly complex multi-
hypothesis approaches.

In future work, we want to extend our evaluation to
multi-modal sensor data and compare quantitatively against
further publicly available state-of-the art tracking methods
(e. g. [10]) on challenging data captured in a crowded airport
environment (Fig. 1).

To resolve data association ambiguity during extended oc-
clusions, we plan to integrate appearance-based cues when-
ever persons enter the field of view of an RGB-D sensor
on our robot. In these cases, we could also inhibit the track
initiation logic to allow detection of standing persons, if the
RGB-D detector is sufficiently confident. Finally, we want
to integrate other promising methods from the literature that
have, to our knowledge, never been combined in a single
system, including feedback of group information into person-
level tracking [2], motion prediction informed by a social
force model [8], and occlusion geodesics [28].

REFERENCES

[1] T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, “Human-aware
robot navigation: A survey,” Robot. Auton. Syst., vol. 61, no. 12, pp.
1726–1743, Dec. 2013.

[2] M. Luber and K. O. Arras, “Multi-hypothesis social grouping and
tracking for mobile robots,” in Proceedings of Robotics: Science and
Systems, Berlin, Germany, 2013.

[3] T. Linder and K. O. Arras, “Multi-model hypothesis tracking of groups
of people in RGB-D data,” in IEEE Int. Conf. on Information Fusion
(FUSION’14), Salamanca, Spain, 2014.

[4] B. Okal and K. O. Arras, “Towards group-level social activity recog-
nition for mobile robots,” in IROS 2014 Workshop on Assistance and
Service Robotics in a Human Environment, Chicago, USA, 2014.

[5] D. Schulz, W. Burgard, D. Fox, and A. B. Cremers, “People tracking
with mobile robots using sample-based joint probabilistic data associ-
ation filters,” The International Journal of Robotics Research, vol. 22,
no. 2, pp. 99–116, 2003.

[6] F. Basso, M. Munaro, S. Michieletto, E. Pagello, and E. Menegatti,
“Fast and robust multi-people tracking from RGB-D data for a
mobile robot,” in Intelligent Autonomous Systems 12, ser. Advances in
Intelligent Systems and Computing, S. Lee, H. Cho, K.-J. Yoon, and
J. Lee, Eds. Springer Berlin Heidelberg, 2013, vol. 193, pp. 265–276.

[7] A. Ess, B. Leibe, K. Schindler, and L. Van Gool, “A mobile vision
system for robust multi-person tracking,” in Computer Vision and
Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, June
2008, pp. 1–8.

[8] M. Luber, J. A. Stork, G. D. Tipaldi, and K. O. Arras, “People tracking
with human motion predictions from social forces,” in Proc. IEEE
International Conference on Robotics and Automation (ICRA’10),
Anchorage, USA, 2010.

[9] M. Luber, L. Spinello, and K. O. Arras, “People tracking in RGB-D
data with online-boosted target models,” in Int. Conf. on Intelligent
Robots and Systems (IROS), San Francisco, USA, 2011.

[10] O. H. Jafari, D. Mitzel, and B. Leibe, “Real-time RGB-D based people
detection and tracking for mobile robots and head-worn cameras,”
in Proc. IEEE International Conference on Robotics and Automation
(ICRA), Hong Kong, China, 2014.

[11] C. Martin, E. Schaffernicht, A. Scheidig, and H.-M. Gross, “Multi-
modal sensor fusion using a probabilistic aggregation scheme for
people detection and tracking,” Robotics and Autonomous Systems,
vol. 54, no. 9, pp. 721 – 728, 2006, selected papers from the 2nd
European Conference on Mobile Robots (ECMR 2005) 2nd European
Conference on Mobile Robots.

[12] N. Bellotto and H. Hu, “Multisensor-based human detection and
tracking for mobile service robots,” IEEE Trans. on Systems, Man,
and Cybernetics – Part B, vol. 39, no. 1, pp. 167–181, 2009.

[13] K. O. Arras, O. Martínez Mozos, and W. Burgard, “Using boosted
features for the detection of people in 2d range data,” in Proc. of the
Int. Conf. on Robotics & Automation, 2007.

[14] M. Munaro, F. Basso, and E. Menegatti, “Tracking people within
groups with RGB-D data,” in Int. Conf. on Intelligent Robots and
Systems (IROS), Oct 2012.

[15] J. Correa, J. Liu, and G.-Z. Yang, “Real time people tracking in
crowded environments with range measurements,” in Social Robotics,
ser. Lecture Notes in Computer Science, G. Herrmann, M. Pearson,
A. Lenz, P. Bremner, A. Spiers, and U. Leonards, Eds. Springer
International Publishing, 2013, vol. 8239, pp. 471–480.

[16] H. W. Kuhn, “The hungarian method for the assignment problem,”
Naval Research Logistics Quarterly, pp. 83–97, 1955.

[17] R. Jonker and A. Volgenant, “A shortest augmenting path algorithm
for dense and sparse linear assignment problems,” Computing, vol. 38,
no. 4, pp. 325–340, 1987.

[18] Y. Bar-Shalom, Tracking and Data Association. San Diego, CA,
USA: Academic Press Professional, Inc., 1987.

[19] Z. Hu, H. Leung, and M. Blanchette, “Statistical performance analysis
of track initiation techniques,” Signal Processing, IEEE Transactions
on, vol. 45, no. 2, pp. 445–456, Feb 1997.

[20] D. Helbing and P. Molnár, “Social force model for pedestrian dynam-
ics,” Phys. Rev. E, vol. 51, pp. 4282–4286, May 1995.

[21] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking
performance: the CLEAR MOT metrics,” Journal of Image Video
Processing, vol. 2008, 2008.

[22] A. Milan, K. Schindler, and S. Roth, “Challenges of ground truth
evaluation of multi-target tracking,” in Computer Vision and Pattern
Recognition Workshops (CVPRW), 2013 IEEE Conference on, June
2013, pp. 735–742.

[23] B. Ristic, B.-N. Vo, D. Clark, and B.-T. Vo, “A metric for performance
evaluation of multi-target tracking algorithms,” Signal Processing,
IEEE Transactions on, vol. 59, no. 7, pp. 3452–3457, July 2011.

[24] D. B. Reid, “An algorithm for tracking multiple targets,” IEEE Trans.
on Automatic Control, vol. 24, no. 6, 1979.

[25] I. Cox and S. Hingorani, “An efficient implementation of Reid’s
multiple hypothesis tracking algorithm and its evaluation for the
purpose of visual tracking,” IEEE Trans. Pattern Anal. Mach. Intell.
(PAMI), vol. 18, no. 2, 1996.

[26] K. O. Arras, S. Grzonka, M. Luber, and W. Burgard, “Efficient
people tracking in laser range data using a multi-hypothesis leg-tracker
with adaptive occlusion probabilities,” in Proc. IEEE International
Conference on Robotics and Automation (ICRA’08), Pasadena, USA,
2008.

[27] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based
optimization for general algorithm configuration,” in Learning and
Intelligent Optimization. Springer, 2011, pp. 507–523.

[28] H. Possegger, T. Mauthner, P. Roth, and H. Bischof, “Occlusion
geodesics for online multi-object tracking,” in Computer Vision and
Pattern Recognition (CVPR), 2014 IEEE Conference on, June 2014,
pp. 1306–1313.



Taking a Closer Look at People Tracking in Challenging
Environments Using a Novel Multi-Modal Evaluation Framework
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Abstract— Tracking people is a key technology for robots
and intelligent systems in human environments. Many person
detectors, filtering methods and data association algorithms
for people tracking have been proposed in the past 15+
years in both the robotics and computer vision communities,
achieving decent tracking performances from static and mobile
platforms in real-world scenarios. However, little effort has been
made to compare those methods, analyze their performance
using different sensory modalities and study their impact on
different performance metrics. In this paper, we propose a fully
integrated real-time multi-modal laser/RGB-D people tracking
framework for moving platforms in environments like a busy
airport terminal. We conduct experiments on two challenging
new datasets collected from a first-person perspective, one of
them containing very dense crowds of people with up to 30
individuals within close range at the same time. We consider
four different, recently proposed tracking methods and study
their impact on seven different performance metrics, in both
single and multi-modal settings. We extensively discuss our
findings, which indicate that more complex data association
methods may not always be the better choice, and derive
possible future research directions.

I. INTRODUCTION

People tracking from a first-person perspective using a
mobile sensor platform has been studied in the robotics
and computer vision communities for over a decade, and
various detection methods for different sensor modalities,
as well as tracking algorithms have been proposed. Often,
complex, generic data association methods are combined
with extensions that are specific to the application domain to
better deal with the frequent occlusions in such environments
and model people’s behavior [1], [2]. However, very recent
work [3] reminds us that although complex data association
methods, such as JPDAF or MHT, have been shown to
deliver better performance in application areas with high-
clutter environments like radar tracking [4], no systematic
comparison between simpler and more complex data asso-
ciation methods has been performed for people tracking,
where false positive detections occur systematically rather
than randomly. Also, most systems focus only on a single
sensor modality, and are tested in simple environments with
only few tracked persons and limited dynamics.

In this paper, we want to go one step further and examine
how well some recent, publicly available tracking methods

1 Social Robotics Laboratory, University of Freiburg, Germany.
http://srl.informatik.uni-freiburg.de, {linder,arras}@cs.uni-freiburg.de

2 Computer Vision Group, RWTH Aachen University, Germany.
http://www.vision.rwth-aachen.de/, {breuers,leibe}@vision.rwth-aachen.de

This work has been partly supported by the European Commission under
contract number FP7-ICT-600877 (SPENCER).

Fig. 1. Typical example of a crowded, dynamic situation in an airport
terminal with frequent occlusions where we want to robustly and efficiently
track persons from a first-person perspective with our mobile service robot
platform, which can (barely) be seen in the middle of the picture.

perform in challenging, highly crowded and dynamic sce-
narios such as a busy airport terminal (Fig. 1). Following
recent trends in the computer vision community towards a
standardized benchmark for multi-object tracking methods
[5], [6], and to enable a fair comparison of different tracking
methods, we integrate them into a common framework and
provide them with the same set of detections as input.

Our contributions are:

• An extensive ROS-based framework that provides the
tooling for the systematic evaluation of multi-modal
people tracking algorithms under identical conditions

• A comparison of four state-of-the-art real-time tracking
systems that have been integrated into the framework,
with focus on both tracking quality and runtime per-
formance – including a proven MDL-based tracking
approach from the computer vision community [7]

• Experiments on 2 challenging new datasets with RGB-D
and 2D laser data from a first-person perspective

• A thorough discussion of strengths and weaknesses of
current methods in these scenarios, and possible future
directions of research.

Large parts of our framework, including our new multi-
modal annotation tool and the parameters used to obtain our
results, will be made publicly available as open source, to
allow researchers to quickly reproduce our results on their
own datasets and to evaluate their own algorithms using our
framework.
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Fig. 2. (a) All components of our framework are implemented as separate, reusable ROS modules, most of them open source. So far, we have integrated
four existing tracking methods [7]–[10] into our framework for a fair comparison under identical conditions. (b) Our new multi-modal track annotation
tool, based upon RViz. The 3D visualization encompassing RGB-D and laser point clouds as well as annotated trajectories (red line with yellow waypoint
markers), along with 2D camera views with projected annotations (small images), significantly speeds up the annotation process. (c) Our service robot
platform, equipped with front- and rear-facing 2D laser and RGB-D sensors. (d) Our mobile sensor platform, in a similar sensor configuration.

II. RELATED WORK

People detection and tracking are of high interest to both
robotics and computer vision. While both communities have,
rather individually, made significant progress in the past,
there has recently been a trend towards combining multiple
methods and modalities as the available computational power
for real-time detection and tracking is becoming larger, also
on mobile robot platforms.

In robotics, often laser sensors are used to cover a large
field of view, especially for mapping and navigation. The
methods to detect people in this setup are based on simple ad-
hoc classifiers looking for local minima in the scan [11], [12],
or more elaborate person detectors [13]. In vision, camera
and RGB-D sensor information is used as an input stream
to the detection pipeline. Often HOG features are used to
detect full bodies [14], [15], while upper-body detectors like
[7] are better suited to detect nearby persons.

In both areas, missed detections and false alarms need to
be compensated by a tracking algorithm, which often uses
some form of data association method. [9] and [16] use the
most simple NN method or NN-JPDA. Another NN tracker,
[8], is using a more sophisticated track initiation and deletion
logic and interacting multiple models (IMM). The more
complex multi-hypothesis tracking methods [17], [18] are
known to outperform simple NN methods in radar tracking
[4], and have also been used for people tracking purposes
[10] along with extensions such as a social force model
or person-level feedback from group-tracking [1], [19]. The
vision based MDL-tracker [7] is also loosely based on MHT,
but formulates it as a quadratic pseudo-boolean optimization
problem, solved via mininum description length (MDL). As
it was specifically designed for visual data, it allows for
the incorporation of an appearance model. Most trackers use
an Extended Kalman Filter (EKF) to incorporate a constant
velocity motion model of pedestrians.

With higher computational power, it has become possible
to use multi-modal sensor platforms, equipped with both
laser and RGB-D sensors, especially on service robots.
This combination makes it possible for the robots to deal
with the challenges in their highly crowded and dynamic
field of operation. While a few multi-modal systems have
been presented in the past [9], [20], [21], to the best of

our knowledge, a consistent comparison of different people
tracking approaches in a multi-modal setup in challenging
environments is still missing in robotics. Even in the vision
community, a standardized baseline evaluation of existing
tracking methods has just begun [6]. Being aware of the
challenges of groundtruth evaluation, as discussed in [5],
we aim at providing a reusable, multi-modal framework that
enables a consistent, comparative evaluation.

III. OUR FRAMEWORK

Fig. 2a gives an overview of the main components of our
modular people tracking framework. All of these components
are fully integrated into ROS and will be made publicly
available on GitHub1 at publication of this paper. In the
following, we will briefly describe the most important com-
ponents, starting from the left at the detection layer.

A. Detection

2D laser. For people detection in 2D laser range data, we
use a random forest classifier trained on the laser features
described in [13]. While our ROS-based implementation,
using classifiers from the OpenCV library, also allows to use
other classifiers such as Adaboost or SVM, the random forest
(with 15 trees and maximum depth of 10) performed best on
our manually annotated training/test data set recorded in a
pedestrian zone [19] using a SICK LMS 500 laser scanner at
a height of 70 cm and 0.25 degrees angular resolution. After
a separate ROS node has segmented the laser scans using
a variant of jump-distance clustering, the detector computes
a set of geometric 2D features on each segment which are
then fed to the classifier.

Monocular vision and RGB-D. For person detection in
RGB-D, the existing depth template-based upper-body detec-
tor described in Jafari et al. [7], which runs in real-time at 20-
30 Hz on the CPU, as well as their CUDA-based, monocular
groundHOG detector [14] have been integrated. We also
extended the RGB-D person detector from [22], which
applies a HOG classifier on candidate regions extracted from
a depth-based height map, with GPU acceleration.

1https://github.com/spencer-project/spencer_
people_tracking



Fusing detections. For multi-sensor people tracking, our
framework allows to flexibly combine detections from mul-
tiple modalities using an easy-to-setup detection-to-detection
fusion scheme that works even when the particular tracking
algorithm was not specifically designed to cope with detec-
tion input from multiple sources, as most of the trackers in
our evaluation. Using greedy NN association, we first fuse
detections from sensors with overlapping fields of view (e. g.
front laser, front RGB-D) and then aggregate the resulting
sets of detections that do not overlap (e. g. front and rear
detections). As association cost, we use either the Euclidean
or Mahalanobis distance between individual detections, or a
cost computed in polar coordinates that penalizes discrepan-
cies in distance less heavily (mainly useful for 2D image-
based detectors that do not output precise depth estimates).
All detectors integrated into our framework output detections
which adhere to the same ROS message format. A Detected-
Person comprises a position vector z′ and its uncertainty R′

in a sensor-specific 3D coordinate frame, a scalar detection
confidence, and some meta-data. This clearly defined inter-
face allows to easily integrate additional detectors into the
system, and provides the interface to the tracking module.

B. Tracking

Up to now, we have integrated four different tracking
systems into our framework for comparison purposes. We
will shortly outline these approaches in the following:

Nearest-neighbor tracker [9]. This is a very fast tracker
based upon a nearest-neighbor data association that has
recently been integrated into ROS by the authors of [9].
Motion prediction is performed via an Extended Kalman
Filter (EKF) using a constant velocity (CV) motion model,
and tracks are initiated if a minimum number of detections
occur within a small radius. Track deletion takes place if the
track covariance exceeds a certain limit. A more advanced
NN-JPDAF association method, not used in our experiments,
is also provided.

Extended nearest-neighbor tracker [8]. Also based upon
greedy NN data association, this recent work of our own
was developed with robustness and computational efficiency
in mind especially in highly crowded scenarios. Compared to
[9], it includes a velocity-based track initiation logic that only
initiates new tracks if a given amount of detections appear
with a consistent velocity profile that is compatible with
typical human walking speeds. Track deletion occurs when
the number of tracking cycles without matching detection
exceeds a certain threshold, and a distinction is made be-
tween ‘young’ and ‘mature’ tracks that have already existed
for a while; young tracks are deleted after a smaller number
of cycles, since they often represent false alarms. For motion
prediction, an IMM approach is used that combines multiple
CV and coordinated turn models.

Multi-hypothesis tracker [10]. As an additional baseline
method for comparison, we use a variant of the multi-
hypothesis tracker (MHT) after Reid et al. [17] and Cox
& Hingorani [18] with explicit occlusions labels [10]. This

probabilistic tracker does not incorporate any track initiation
logic. Instead, new track creation is modelled via a Poisson
process. Various extensions (such as incorporation of group-
level feedback or a social force model) have been proposed
in the past, but are not used in our experiments.

Vision-based MDL tracker [7]. This method is based on the
work of Leibe et al. [23] and uses the tracking framework of
[24], [25] to build an overcomplete set of track hypotheses,
similar to MHT. Via bi-directional EKF new trajectories are
generated for the current frame by following the motion
model backwards in time, while existing trajectories are
extended from the last to the current frame. Each track
then receives an individual score based on the appearance,
motion model and confidence of inlier detections, while the
interaction cost between tracks takes into account physical
overlap and shared detections. Selecting the best subset of
hypotheses from the score matrix is then formulated as a
quadratic binary problem and solved in an MDL fashion by
the multi-branch method of [26].

In all of the examined tracking systems, person detections
arrive in their sensor-specific coordinate frame and are in-
stantaneously transformed into a locally fixed frame (based
upon robot odometry) that does not move with the robot.
This ensures that the motion prediction of tracked persons
is independent from the robot’s ego-motion. In the resulting
set of measurements Z = {z1, ..., zn} ⊂ R2, we drop the z
coordinate as we only track in 2D world coordinates.

C. Groundtruth annotation and evaluation

To our knowledge, no multi-modal track annotation tool
for 2D/3D laser, RGB-D and stereo data is currently publicly
available. Our new ROS-based multi-modal annotation tool,
partially shown in Fig. 2b, leverages the powerful visualiza-
tion capabilities of the ROS visualization tool RViz and rqt
to enable annotating people directly in 3D world space in
the RGB-D and laser point clouds. For reference purposes,
annotations and 2D laser scans are also projected into the
camera images. By placing trajectory waypoints at regular
intervals (e. g. every 0.5 sec or 2.0 sec, depending on the
dynamics of the scene) and interpolating in between, the
annotation process is significantly sped up.

For tracking performance evaluation purposes, we have
integrated and extended a publicly available Python imple-
mentation of the CLEAR-MOT metrics, and implemented
further trajectory-based metrics (both described in Sec. IV-
B), as well as the OSPA metrics [27] (not used in this work).

IV. EXPERIMENTS

A. Datasets

For our experiments, we have recorded two entirely new,
multi-modal datasets (cf. Fig. 3). The Motion Capture Se-
quence has been recorded in a narrow lab environment in
front of our robot platform, shown in Fig. 2c, which remains
stationary throughout this sequence. The recorded sensor
data includes a 190-degree frontal 2D laser scan from a



(a) Motion Capture Sequence (b) Airport Sequence 03

Fig. 3. Example RGB frames from our new datasets.

SICK LMS 500 sensor, and the data from a front-facing Asus
Xtion Pro Live RGB-D sensor. In this four-minute sequence,
which we will make publicly available, four persons that
wear motion capture markers on their heads for groundtruth
acquisition are moving around in highly dynamic and erratic
patterns, very frequently occluding each other and stopping
or accelerating abruptly. This dataset is mainly intended to
simulate human-robot interaction, in which case people often
‘play’ with the robot, or try to challenge its tracking abilities.

The second sequence, Airport Sequence 03, is part of a much
larger dataset that was recorded at a major European airport,
used by around 150,000 passengers each day, using a moving
sensor platform (Fig. 2d) that closely replicates the sensory
setup on our robot. The dataset includes 2D laser range data
recorded from two back-to-back SICK LMS 500 scanners at
70 cm height, covering a full 360-degree horizontal field of
view around the robot. It also includes RGB-D data from two
Asus sensors mounted in horizontal orientation and facing
into forward and rearward direction.

In the first half of this sequence, the sensor platform
remains stationary and observes a dense flow of passengers
disembarking from an airplane. In the second half, the
platform joins the flow of people towards a large, open area
inside the terminal. During the entire 4-minute sequence, the
platform is almost constantly surrounded by 20–30 persons
that follow various motion patterns at different walking
speeds and undergo many severe occlusions. In total, 172
ground truth tracks have been manually annotated using
our new multi-modal annotation tool. For our experiments,
we ignore all groundtruth tracks at a distance of greater
than 12.0m as correctly annotating tracks becomes highly
challenging above this distance due to extreme occlusions
and increasing inaccuracy in sensor calibration.

B. Evaluation metrics

A commonly used measure for evaluating multi-object
tracking performance are the CLEAR-MOT metrics [28]. Be-
sides counting false positives (FP), false negatives (FN) and
ID switches (IDS), they define an aggregate error measure
called MOT Accuracy (MOTA) as

MOTA = 1−
∑

k(FPk + FNk + IDSk)∑
k GTk

,

where k is the tracking cycle index. The optimal MOTA
score is 1.0, and MOTA can reach negative values if the

tracker makes more errors than there are ground truth objects
GT over the entire duration of the dataset.

As discussed extensively in [5], MOTA scores can vary
between implementations and are highly dependent on meta-
parameters such as the matching distance threshold θd
and the way in which track hypotheses are assigned to
groundtruth objects. In our version, we compute groundtruth
correspondences using a variant of the Hungarian method
based upon Euclidean distances between object centroids in
world coordinates, with θd = 1m. We ignore all correspon-
dences where the groundtruth track is physically occluded,
which is determined by searching for associated laser points
within a radius of 0.3m of the annotated position, shifted
towards the sensor origin by 0.2m to take into account that
the laser sensor only perceives the surface of the person.

One caveat is that the number of ID switches (IDS)
has very low influence on overall MOTA, as FP and FN
counts are often significantly higher in comparison. There-
fore, the absolute number of ID switches is often used as
a second, separate measure when evaluating people tracking
performance. However, a tracking system with lower track
recall (i. e. which tracks less persons by, for instance, initi-
ating tracks very reluctantly) almost certainly generates less
ID switches. Very recent research in the computer vision
community [6], which we adopt here, instead motivates to
compute the relative number of ID switches, rIDS, defined
as a product of the absolute number of ID switches and the
inverse of the recall over all frames, IDS ·GT/TP.

Finally, we also compute the trajectory-based measures
of mostly tracked (MT) and mostly lost (ML) persons [29],
denoting the number of groundtruth tracks that have been
tracked for more than 80% or less than 20% of their length.

C. Experimental setup

All of our experiments were conducted on a high-end
gaming laptop equipped with a quad-core Intel Core i7-4700
MQ processor and 8 GB of RAM under Ubuntu 14.04 with
ROS Indigo. Each single experiment has been run at least 3
times and metrics have been averaged to ensure stable results
that are not negatively affected by the not fully deterministic
message passing, synchronization and transform lookups in
ROS. For the computationally more complex experiments
on the airport dataset sequence, we have pre-recorded all
detections to ensure that all tracking algorithms are always
fed with the same input for a fair comparison.

D. Parameter selection

As highlighted in [5], for evaluations of multi-person
tracking it is important that parameters of the tracking
algorithm are tuned on a separate validation dataset to verify
its generalization capabilities and avoid overfitting. With this
in mind, we carefully tuned all of our algorithms on separate,
similar, but not identical datasets. Specifically, for tuning the
NNT [9], the Extended NNT [8] and the MHT [10], we used
the laser-based Freiburg Main Station dataset (cf. e. g. [1]),
as well as a synthetically generated dataset via a combination
of the pedestrian simulator PedSim and Gazebo (see [8] for



details). The vision-based MDL tracker has been tuned on
the ETH dataset [30] recorded in a pedestrian zone.

V. RESULTS

In Tables I–IV, we present quantitative results of the
different tracking methods for each modality on our datasets.
Qualitative results are available on our YouTube channel2.
As the MDL tracker [7] currently only supports image-based
detections from the upper-body and groundHOG detectors,
we only use it in experiments with the front RGB-D sensor.

A. Comparison of different tracking approaches

Comparing the results of the different tracking approaches
under identical conditions (sequence, modality), we note that
the simple NN approaches often generate the best MOTA
score. This might be due to a lower number of parameters,
which could result in better generalization capabilities re-
garding new scenarios. The Extended NNT is superior to
the NNT in terms of MOTA and FP%, most likely due to its
track initiation and deletion logic. Especially on the Motion
Capture Sequence with four groundtruth tracks, one or two
ghost tracks are enough to cause bad FP scores for methods
without a sophisticated initiation logic, such as NNT and
MHT. Interestingly, both of these perform very similarly in
most of the tested scenarios concering MOTA and FP%. On
the other side, the miss ratio is often the highest for the
Extended NNT, and caused by delayed track initiation.

Both multi-hypothesis methods seem to suffer from fre-
quent switching between hypotheses, a problem well known
in multi-hypothesis tracking. This results in a high number of
relative ID switches. However, in front RGB-D only (Tab. I),
the MDL-Tracker gives best FP% and thus a MOTA score
comparable to the one of Extended NNT. Note that MHT
might obtain better results if parameters such as new track
rates were re-tuned on the datasets used for testing, or if
it were allowed to correct its decisions when running in an
offline-manner, i.e., fixed-lag smoothing. Nevertheless, this
can be problematic for real-time motion planning applica-
tions due to the introduced delay, and lowers MOTA when
comparing always against the most recent groundtruth.

The simple NNT tracker dominates in the number of
consistently tracked targets, i.e., higher MT and lower ML,
due to a more straightforward initiation of tracks.

B. Laser-only vs. multi-modal detections

Next, we want to investigate the benefits of the multi-
modal sensor platform and the use of both 2D laser and
RGB-D sensors. On the airport sequence, incorporating
vision-based detections from groundHOG and upper-body
increases the number of mostly tracked targets. This leads to
a higher track recall and lower miss ratio for all approaches,
at the cost of an increased FP%, ultimately resulting in a
lower MOTA score (Tab. III). A more sophisticated fusion
scheme of the different detector outputs might yield some
improvement, however, a visual inspection of our naïve
fusion scheme reveals no immediately apparent problems.

2https://youtube.com/spencereuproject

(a) (b) (c)

Fig. 4. Typical failure cases from the HOG detector caused by (a) clutter,
(b) reflections on the floor or (c) on the walls. Reflections on walls and
glass surfaces can sometimes also cause false laser detections.

Instead, further experiments reveal that the HOG detector
causes many false alarms (Fig. 4) and provides imprecise
depth estimates for distant persons, obtained by projecting
image footpoints onto the estimated ground plane. Tab. IV
shows the multi-modal result without HOG, but still using
upper-body detections from the RGB-D sensor. The FP%
decreases, but unfortunately also MT goes down and miss
rate increases. Anyhow, general tracking quality improves,
which is reflected in the highest MOTA score for each
tracking approach so far using this configuration.

On the Motion Capture Sequence, all methods struggle
with an extremely high FP%, except for Extended NNT,
whose extensive track initiation logic can again compensate
for false alarms. The resulting discrepancy of the MOTA
scores is huge (75% vs. 8-15%). It seems here that the laser
detector – instead of HOG – is responsible for most of the
false positives, often in chairs and other furniture: when using
only front RGB-D (Tab. I), FP% is around 50%-points lower.

C. Filtering detections by a static map

As a static map of the environment is often available for
navigation purposes anyway, we want to examine its use for
false positive suppression. We rasterize a circle of 15 cm
radius at the detection’s position onto the given occupancy
grid map. If less than 90 percent of all grid cells are free,
we reject the detection. As we filter on the detection level,
the process can be applied to any detector.

As no map had been recorded in the airport environment,
we restrict this experiment to the Motion Capture Sequence
(Tab. V), where it leads to an increase in MOTA of 15–65
percentage points for the different tracking approaches.

D. Runtime performance

In the last column of each table, we show the median of
the extrapolated processing rates of the tracking algorithms
based upon actually measured cycle times (without taking the
detection stage into account). All examined tracking systems
are implemented in C++. Note that the rate of MHT is
fixed to 30 Hz, generating as many hypotheses per cycle as
possible in this time frame (at lower rates, the performance
gets worse due to less frequent updates of the EKF).

The simple NNT is about 3 times computationally more
efficient than the Extended NNT. Both outperform the two
more complex methods MDL and MHT by two orders of



Airport Sequence 03
Method MOTA rIDS FP% Miss% MT ML Hz

NNT [9] 27.7% 227 39.4% 32.5% 92 47 13701
Extended NNT [8] 44.4% 210 13.1% 42.1% 63 60 4287
MHT [10] 26.9% 338 39.4% 33.0% 87 51 28
MDL-Tracker [7] 43.7% 428 12.5% 43.1% 36 59 53

Motion Capture Sequence
MOTA rIDS FP% Miss% MT ML Hz

60.7% 131 23.6% 14.3% 4 0 20726
69.8% 151 7.8% 20.9% 4 0 5637
57.9% 173 24.7% 15.6% 4 0 28
60.7% 373 4.8% 31.3% 1 0 139

TABLE I
ONLY FRONT RGB-D DETECTIONS (SMALL FOV)

Airport Sequence 03
Method MOTA rIDS FP% Miss% MT ML Hz

NNT [9] 59.7% 236 20.8% 19.3% 112 27 6184
Extended NNT [8] 62.8% 331 3.4% 33.5% 68 35 2307
MHT [10] 58.9% 700 16.6% 23.9% 85 26 29

Motion Capture Sequence
MOTA rIDS FP% Miss% MT ML Hz

25.6% 54 70.4% 3.3% 4 0 17968
68.8% 60 25.3% 5.2% 4 0 4988
28.0% 85 67.3% 3.8% 4 0 28

TABLE II
ONLY LASER DETECTIONS (LARGE FOV)

Airport Sequence 03
Method MOTA rIDS FP% Miss% MT ML Hz

NNT [9] 45.7% 325 36.4% 17.7% 123 19 4590
Extended NNT [8] 62.1% 313 8.2% 29.4% 96 26 2005
MHT [10] 46.3% 692 34.9% 18.2% 117 22 31

Motion Capture Sequence
MOTA rIDS FP% Miss% MT ML Hz

14.8% 55 81.7% 2.7% 4 0 15703
74.9% 58 20.1% 4.3% 4 0 4690
8.6% 74 87.6% 2.9% 4 0 29

TABLE III
MULTI-MODAL DETECTIONS (LARGE FOV)

Airport Sequence 03
Method MOTA rIDS FP% Miss% MT ML Hz

NNT [9] 62.1% 226 18.7% 19.0% 114 27 6100
Extended NNT [8] 64.2% 262 3.3% 32.4% 77 33 2222
MHT [10] 60.2% 676 17.2% 22.0% 97 24 29

Motion Capture Sequence
MOTA rIDS FP% Miss% MT ML Hz

18.1% 52 77.6% 3.7% 4 0 15857
77.4% 62 16.5% 5.4% 4 0 4744
17.8% 76 77.7% 3.6% 4 0 28

TABLE IV
MULTI-MODAL DETECTIONS WITHOUT HOG (LARGE FOV)

magnitudes, and require less than 10 percent CPU usage even
in very crowded environments.

VI. DISCUSSION

In the following, we discuss the most important conclu-
sions that we can draw from our experiments on the crowded
airport dataset and the dynamic motion capture sequence.

A. Influence of detector performance

A major observation that we made during our experiments
is that detector performance is the single, most important fac-
tor influencing tracking performance which goes far beyond
the impact of the chosen tracking algorithm. In a nutshell,
none of the examined tracking methods deal really well
with high false positive rates. During initial experiments,
we used a 2D laser detector trained on a different sensor
model, and using a less restrictive selection of positive and
negative training samples. This detector caused extremely
bad MOTA scores between −3.3 and −1.3 due to enormous

false positive rates (> 200%). None of the examined methods
could cope with this high number of false positives, which
occur systematically and repeatedly at the same locations.
Although the track initiation logic of the extended NNT
was able to suppress a significant amount of the false
positives, MOTA still did not exceed −1.3. Even though
multi-hypothesis trackers have been shown to work well in
(random) high clutter in radar tracking [4], the worst MOTA
score was obtained using the MHT, which does not possess
any dedicated track initiation logic. After incorporating the
static occupancy grid map to filter out false detections
beforehand, MOTA scores of all examined approaches be-
came positive, but were still significantly below the levels
presented in Sec. V.

B. Integrating 2D image-based detections

While a vision-based tracker can significantly benefit from
2D image-based detections (e. g. from HOG) that extend its
maximum tracking distance beyond the useful working range



Motion Capture Sequence
Method MOTA rIDS FP% Miss% Hz

NNT [9] 78.0% 50 18.5% 2.9% 19050
Extended NNT [8] 89.4% 59 5.3% 4.6% 4926
MHT [10] 73.8% 71 21.9% 3.4% 28

TABLE V
MULTI-MODAL DETECTIONS (LARGE FOV) + STATIC MAP

of RGB-D sensors (around 6–7m), their depth estimates are
often very imprecise. In a multi-modal setup where precise
laser measurements are available (σ ≈ 3cm), using HOG
detections as a direct input to the tracking algorithm may
therefore be detrimental. Instead, laser-based detections may
be a better choice to cover far detection ranges, while image-
based detections could be used to validate laser detections
visually, if an association can be established.

C. The choice of tracking parameters

Our experience shows that the correct choice of param-
eters significantly outweighs the choice of data association.
Tracking approaches with only few parameters may generally
be the preferrable choice, as they may generalize better
towards new scenarios. Especially complex, probabilistic
multi-hypothesis approaches often require re-learning or
manual tuning by an expert of parameters such as new-track
or deletion Poisson rates that depend on the given scenario
and can vary with location and time (e. g. when a new plane
arrives at an airport and the passengers start disembarking).
Also, automatic parameter learning approaches as outlined
in [8], [31] may help to simplify the process. To make our
results easier to reproduce and allow researchers from other
fields (e. g. HRI) to benefit from our findings, we will share
all parameter configurations used in our experiments online.

D. Trade-off between FPs, miss rate and ID switches

Another lesson we learn from our experiments is that
the choice of parameters greatly depends on the desired
application scenario. There appears to be no universal set
of parameters that fully accommodates all requirements, as
a trade-off has to be made between attaining a low false
positive count, a low miss rate, and a low number of ID
switches. The first two can be important when using the
people tracker output for socially aware navigation, since
high false positive rates (i. e. ghost tracks) could freeze the
robot, while missed tracks can cause the robot to behave
impolitely or even endanger people. On the other hand, in
person guidance scenarios, it is of utmost importance to
maintain the ID of a tracked person as long as possible,
while false positives might not be such a large issue.

As shown in our experiments, low false positive rates can
be achieved by a dedicated track initiation logic, pre-filtering
on a static map, and early track deletion. The first two options
can cause the tracker to miss certain (e. g. static) tracks, while
the last option may result in ID switches if the track suddenly
reappears after an occlusion.

E. Importance of standardized tracking metrics

Even minor differences in tracking metrics implementation
or its parameters can have significant influence on results. We
agree with findings from the vision community [5] which
underline the importance of using a standardized evaluation
script and the same detection input for all tracking systems.
Our proposed tracking framework is, to our knowledge, the
first that allows for multi-modal data annotation in RGB-D,
2D/3D laser and potentially stereo data, and enables a
systematic evaluation and comparison of different tracking
methods and detectors in a joint framework.

F. Which tracking approach to choose?

Finally, we attempt to answer the question which of the
examined tracking methods to choose for real-time people
tracking from a mobile platform in very crowded and dy-
namic environments. Looking at the multi-modal results on
the motion capture sequence (Table III, right), we see that
the same, underlying NN data association method of [8], [9]
delivers an astonishing difference in MOTA performance of
60%, depending on the presence or lack of a dedicated track
initiation logic. On the other hand, on the airport sequence,
we observe only a a 0.5% difference in MOTA between
simple NN and complex MHT data association. Therefore,
as already hinted at in [8], it appears that incorporating
promising tracking extensions (e. g. [1], [2]) into a simple
data association scheme might be the way to go. The com-
putation time which is saved by refraining from using a more
complex multi-hypothesis data association method could
instead be spent on higher-level perception, or to improve
detector performance, which has a high impact as previously
discussed. Both of the discussed NN-based approaches are
relatively easy to configure, show good performance on our
test datasets, and run at low CPU usage (<10% on a single
core) – which is crucial on a mobile service robot platform
that also needs to localize itself, plan and navigate.

Here, the hypothesis-oriented MHT after Reid [17] and
Cox & Hingorani [18] may also be at disadvantage in very
crowded environments. Since the entire state of the scene
is represented within each single hypothesis, a very large
number of hypotheses may be needed to adequately represent
all likely combinations of possible track states. In [10], up to
1000 hypotheses are generated for just 4 person tracks, each
one involving the same data association that the NN-based
methods only need to perform once. Generating as many
hypotheses as possible within a given time window, as in
our experiments, ensures a certain minimum cycle rate to be
met, but may result in only few hypotheses being generated.

Finally, scenarios where some delay in decision making
can be tolerated, such as offline video analysis or static
observation of people behavior, allow for a different mode of
evaluation where the delayed selection of the best hypothesis
can be taken into account, by deferring matching with the
groundtruth by a certain number of tracking cycles. We
believe that in these cases, the multi-hypothesis approaches
[7], [10] can show their full potential and attain higher scores.



G. Future directions of research

Using solely detectors with relatively low false-positive
rate, the difference in tracking metrics between various track-
ing approaches and implementations becomes surprisingly
small. Visually analyzing the remaining ID switches that
still occur on the airport and motion capture sequences,
we believe that in these cases, the motion model provides
insufficient information and full person reidentification is
required. Implementing a robust reidentification module can
be very challenging in scenarios such as the airport, which is
used by over 150,000 passengers per day. An open question
is still how to deal with tracks that first re-appear in 2D laser
and need to be assigned a preliminary ID, before potentially
getting visually re-identified as a previously seen person; in
person guidance scenarios, this issue potentially needs to be
dealt with on the task planning level.

VII. CONCLUSION

In this paper, we have presented a multi-modal people
tracking framework into which we have integrated four
existing tracking approaches of varying complexity, in order
to study them on two challenging new, multi-modal datasets
– one of them recorded from a static platform in a highly
dynamic HRI scenario, and another one from a moving
platform inside a crowded airport terminal. We have carefully
analysed the performance of these existing methods with
regard to multiple tracking metrics under different multi-
modal configurations, identified and extensively discussed
their strengths and weaknesses, shared some learned lessons
and drawn conclusions that may guide possible future di-
rections of research. Finally, we want to encourage other
researchers to integrate their own detectors and tracking
algorithms into our framework, and share their results.
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Abstract. In this case study chapter, we discuss the implementation
and deployment of a ROS-based, multi-modal people detection and track-
ing framework on a custom-built mobile service robot during the EU FP7
project SPENCER. The mildly humanized robot platform is equipped
with five computers and an array of RGB-D, stereo and 2D laser range
sensors. After describing the robot platform, we illustrate our real-time
perception pipeline starting from ROS-based people detection modules
for RGB-D and 2D laser data, via nodes for aggregating detections from
multiple sensors, up to person and group tracking. For each stage of the
pipeline, we provide sample code online. We also present a set of highly
configurable, custom RViz plugins for visualizing detected and tracked
persons and groups. Due to the flexible and modular structure of our
pipeline, all of our components can easily be reused in custom setups.
Finally, we outline how to generate test data using a pedestrian simulator
and Gazebo. We conclude with quantitative results from our experiments
and lessons that we learned during the project. To our knowledge, the
presented framework is the functionally most complete one that is cur-
rently available for ROS as open-source software.

Keywords: People detection, people tracking, group tracking, percep-
tion, service robot, mobile robot, sensors, visualization

1 Introduction

In this chapter, we discuss our experiences with the implementation and deploy-
ment of a ROS-based people detection and tracking framework on a complex,
custom mobile service robot platform equipped with a large array of sensors.

Contributions of the Book Chapter

One key contribution of this chapter is a set of reusable message definitions
for a people and group detection and tracking pipeline. In our research, we
demonstrated that these definitions can successfully be applied across different
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sensor modalities and real-time detection and tracking algorithms, for which we
provide exemplary implementations. Based upon these message definitions, we
also provide a reusable and highly configurable set of visualization plugins for the
standard ROS visualization tool, RViz. To our knowledge, the resulting people
detection and tracking framework is the functionally most complete one that is
publicly available for ROS at present.

The code for the detection and tracking modules, as well as our message
definitions and visualization plugins, can be found online1 in a Git repository,
mostly under a BSD license. The content of this repository needs to be cloned
into a ROS workspace and built using catkin make. An up-to-date list of depen-
dencies can be found in the accompanying Readme file. Our components have
been tested on ROS Hydro and Indigo on 64-bit Ubuntu systems.

2 Background of the SPENCER Project

The aim of the EU FP7 research project SPENCER is to develop algorithms
for service robots that can guide groups of people through highly dynamic and
crowded pedestrian environments, such as airports or shopping malls, while be-
having in a socially compliant manner by e. g. not crossing in between families
or couples. Possible situations that such a robot could encounter are visualized
in Fig. 1. To this end, robust and computationally efficient components for the
perception of humans in the robot’s surroundings need to be developed.

Fig. 1. Typical situations encountered by a mobile service robot in crowded pedestrian
environments, such as shopping malls or airports. To be able to behave in a socially
compliant way while driving, by for instance not crossing through a group, the robot
needs to gain a precise understanding of the persons in its environment.

2.1 Robot Hardware and Sensory Setup

As none of the commercially available robot platforms offered the computational
and sensory capabilities required for the research in SPENCER, a custom mobile
robot was developed by an industrial partner within the project. The differential-
drive robot platform built for SPENCER, shown in Fig. 2 (left), is around 2

1 https://github.com/spencer-project/spencer_people_tracking
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meters tall and equipped with two onboard Intel Core i7-3520M machines for
planning and navigation, an i3-2120 machine for interaction, two i7-4700MQ
gaming laptops with nVidia GeForce GTX 765M for perception and one em-
bedded PowerPC system for low-level motion control. All systems communicate
over a gigabit ethernet connection and, except for the embedded system, run
ROS Indigo on Ubuntu 14.04.

The robot is equipped with two front- and two rear-looking RGB-D sensors, a
front-facing stereo camera system and a pair of 2D laser scanners offering, when
combined, a 360-degree coverage. For human-robot interaction, a touchscreen
and a boarding pass reader have been integrated. Custom ROS wrappers for
communication with the embedded system and the robot’s head joints were
developed as part of the project.

Fig. 2. Left: Picture and renderings of the SPENCER robot platform. Right: The
custom-built mobile data capture platform, including a custom odometry solution us-
ing quadrature encoders in dynamo housings on both main wheels, connected to a
microcontroller (bottom right picture). Both platforms contain numerous ROS-based
software components distributed over multiple computers.

Mobile Data Capture Platform To obtain groundtruth data for the design,
training and testing of new algorithms, we also built a mobile data capture plat-
form (Fig. 2, right) consisting of an off-the-shelf bicycle trailer equipped with
sensors in a similar configuration as on the actual robot. Wheel odometry for
localization is obtained using a custom microcontroller solution that communi-
cates with a ROS node on a laptop. For data recording using rosbag, we used 3
high-end laptops with fast SSDs. Overall, using this platform, we captured over
1.4 TB of data at a major European airport to train our perception components.

2.2 People Tracking Pipeline

Figure 3 shows the real-time people and group detection and tracking pipeline
developed in the context of the SPENCER project.

Starting with sensory data such as 2D laser scans, RGB-D point clouds or
stereo or monocular camera images, we first detect people using detectors de-
vised specifically for the particular sensor modality (Sec. 3). The resulting person



4 People Detection, Tracking and Visualization on a Mobile Robot

Fig. 3. People and group tracking pipeline developed during the SPENCER project.

detections are then fed into a person tracker (Sec. 4), which integrates the infor-
mation over time and attempts to maintain a consistent ID for a given person
for as long as possible. A simple approach for tracking entire groups of persons
by estimating their spatial and social relations is presented in Sec. 5.

All of this becomes more complex if information from multiple detectors
operating on different sensor modalities, such as 2D laser and RGB-D, shall
be combined to make tracking more robust and cover a larger field of view
(Sec. 6). Finally, using the powerful RViz visualization tool and custom plugins
developed by us as well as a custom SVG exporter script, the outputs of the
tracking pipeline can be visualized (Sec. 7). In Sec. 8, we briefly outline how
to generate test data for experiments using a pedestrian simulator. Finally, we
show qualitative results and discuss runtime performance in Sec. 9.

The entire communication between different stages of our pipeline occurs via
ROS messages defined in the corresponding sections, which we explain in detail
to encourage reuse of our components in custom setups. The architecture allows
for easy interchangeability of individual components in all stages of the pipeline.

3 People Detection

In this section, we present ROS message definitions and exemplary implemen-
tations for detecting people in RGB-D and 2D laser range data. We start by a
short summary of existing research in this field.

While still relatively expensive, 2D laser range finders offer data at high
frequencies (up to 100 Hz) and cover a large field of view (usually around 180
degrees). Due to the sparseness, the sensor data is very cheap to process, but
does not offer any appearance-based cues that can be used for people detection
or re-identification. Early works based on 2D laser range data detect people using
ad-hoc classifiers that find local minima in the scan [10, 27]. A learning approach
is taken by Arras et al. [2], where a classifier for 2D point clouds is trained by
boosting a set of geometric and statistical features.

In RGB-D, affordable sensors are gaining popularity in many indoor close-
range sensing scenarios since they do not require expensive disparity map cal-
culations like stereo cameras and usually behave more robustly in low lighting
conditions. Spinello and Arras [28] proposed a probabilistically fused HOD (his-
togram of oriented depths) and HOG (histogram of oriented gradients) classi-
fier. Munaro et al. [21] present a person detector in RGB-D that uses a height
map-based ROI extraction mechanism and linear SVM classification using HOG
features, which has been integrated into the Point Cloud Library (PCL). Jafari
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et al. [12] at close range also use a depth-based ROI extraction mechanism and
evaluate a normalized depth template on the depth image at locations where
the height map shows local maxima corresponding to heads of people. For larger
distances, a GPU-accelerated version of HOG is used on the RGB image.

3.1 ROS Message Definitions

In the following, we present our message definitions for person detection. Due
to the multi-language support of ROS, the resulting messages can be processed
by any kind of ROS node, regardless if implemented in C++, Python, Lua or
Lisp. We want to emphasize that our message definitions are intentionally kept
as simple and generic as possible, to allow reuse over a wide range of possible
sensor modalities and detection methods. Therefore, for instance, we do not in-
clude image bounding boxes or visual appearance information which would be
specific to vision-based approaches and not exist e. g. in 2D laser range data.

Our definition of a detected person is similar to a geometry msgs/PoseArray,
but additionally, for each detection we also specify a unique detection ID, a con-
fidence score, a covariance matrix and the sensor modality. The detection ID
allows the detection to be matched against e. g. the corresponding image bound-
ing box, published under the same detection ID on a separate ROS topic. The
covariance matrix expresses the detector’s uncertainty in the position (and ori-
entation, if known). It could, for instance, be a function of the detected person’s
distance to the sensor, and is therefore not necessarily constant. The confidence
score can be used to control track initialization and to compute track scores.
Finally, information about the modality can be used by a tracking algorithm to,
for example, assign a higher importance to visually confirmed targets.

A spencer tracking msgs/DetectedPerson thus has the following attributes:

– detection id [uint64]: Unique identifier of the detected person, monotoni-
cally increasing over time. To ensure uniqueness, different detector instances,
should use distinct ID ranges, by e. g. having the first detector issue only IDs
that end in 1, the second detector IDs that end in 2, and so on.

– confidence [float64]: A value between 0.0 and 1.0 describing the confidence
that the detection is a true positive.

– pose [geometry msgs/PoseWithCovariance]: Position and orientation of the
detection in metric 3D space, along with its uncertainty (expressed as a 6×6
covariance matrix). For unknown components, e. g. position on the z axis or
orientation, the corresponding elements should be set to a large value2. The
pose is relative to the coordinate frame specified in the DetectedPersons
message (see below).

2 We usually use a value of 105 to indicate this. If set to infinity, the covariance matrix
becomes non-invertible, causing issues later on during tracking.
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Fig. 4. Left: Area visible to the front laser scanner (in grey), candidate laser scan
segments (with numbers that identify the segments), and laser-based person detections
(orange boxes). Right: Projection of the laser-based person detections into a color image
of the scene. Segment 72 on the left border is a false negative classification. As the 2D
laser scanner has a very large horizontal field of view (190 degrees), the camera image
does not cover the entire set of laser scan segments (e. g. segment 24 on the right).

– modality [string]: A textual identifier for the modality or detection method
used by the detector (e. g. RGB-D, 2D laser). Common string constants are
pre-defined in the message file.

A DetectedPersons message aggregates all detections found by a detector in
the same detection cycle, and contains the following attributes:

– header [std msgs/Header]: Timestamp and coordinate frame ID for these
detections. The timestamp should be copied from the header of the sen-
sor msgs/LaserScan, Image or PointCloud2 message that the detector is op-
erating on. Similarly, the coordinate frame can be a local sensor frame as long
as a corresponding transformation into the tracking frame (usually “odom”)
exists in the TF hierarchy.

– detections [array of DetectedPerson]: The array of persons that were detected
by the detector in the current time step.

3.2 Person Detection in 2D Laser Data

Boosted Laser Segment Classifier For people detection in 2D laser range
data (Fig. 4), we use a re-implementation of [2] using an Ada-Boost implemen-
tation from the OpenCV library. The classifier has been trained on a large,
manually annotated data set consisting of 9535 frames captured using our mo-
bile data capture platform in a pedestrian zone, with the laser scanner mounted
at about 75 cm height. We used an angular scan resolution of 0.25 degrees and
annotated detections up to a range of 20 meters.

Prior to classification, the laser scan is segmented by a separate ROS node
using either jump distance or agglomerative hierarchical clustering with a dis-
tance threshold of 0.4m. The combined laser-based segmentation and detection
system is launched via the command-line
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Fig. 5. Different RGB-D detectors which we integrated into our framework. Left:
Upper-body detector from [12] which slides a normalized depth template over the
depth image. Middle: RGB-D detector from PCL which first extracts regions of inter-
est, visualized here by boxes, from the point cloud [21]. Right: Combo-HOD (histogram
of oriented depths) detector [28] (closed-source).

roslaunch srl_laser_detectors

adaboost_detector_with_segmentation.launch

and expects sensor msgs/LaserScan messages on the /laser topic and pub-
lishes the resulting detections at /detected persons. The names of these topics
can be reconfigured via parameters passed to the launch file. A short example
dataset for testing, and instructions on how to play back this recorded data, can
be found online in our README file.

Leg Detector We also provide a wrapper to make the existing leg detector

ROS package compatible with our message definitions. This package needs to
be downloaded and built separately3. The underlying algorithm uses a subset of
the 2D features also included in our implementation of [2], but first tracks both
legs separately and in our experience works best if the laser sensor is mounted
very close to the ground, below 0.5m height.

3.3 Person Detection in RGB-D

Upper-Body Detector We modified the publicly available close-range upper-
body detector by [12] (Fig. 5, left) to also output DetectedPersons messages. It
operates purely on depth images and is launched via:

roslaunch rwth_upper_body_detector upper_body_detector.launch

The input and output topics can be configured via the camera namespace

and detected persons parameters. It is assumed that a ground plane estimate
is published on the topic specified by the ground plane parameter, which can
e. g. be achieved using the ground plane fixed.launch file provided in the
rwth ground plane package.

3 http://wiki.ros.org/leg_detector
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Further RGB-D Detectors In the pcl people detector package, we also
integrated the RGB-D person detector by [21] from the Point Cloud Library
(PCL), which extracts regions of interest from a depth-based height map and
then applies a linear HOG classifier. We extended the code to output markers
for visualization of ROIs (Fig. 5, middle) and output DetectedPersons messages.
Configurable parameters are documented in a launch file that can be started via:

roslaunch pcl_people_detector start.launch

Likewise, as a proof of concept, a closed-source implementation of Combo-
HOD (histogram of oriented depths) [28] was integrated (Fig. 5, right).

3.4 Person Detection in Monocular Vision

groundHOG We also integrated the GPU-accelerated medium- to far-range
groundHOG detector from [12] into our framework. It is configured in a similar
way as the upper-body detector described above, and also requires a groundplane
estimate to narrow down the search space for possible person detections. On a
computer with a working CUDA installation, it can be launched via:

roslaunch rwth_ground_hog ground_hog_with_GP.launch

As can be seen from these examples, it is very easy to integrate new detectors
into our people tracking framework. This makes it possible to easily swap out
detectors in experiments, as well as to draw upon a common visualization toolkit
for displaying the detections along with raw sensor data in 3D space (Sec. 7).

4 People Tracking

The output of a person detector just represents a single snapshot in time and
may be subject to false alarms and missed detections. To gain a more long-
term understanding of the scene, to filter out spurious misdetections and to
extract trajectory information and velocity profiles, the detected persons need
to be associated over time, a process called people tracking. The goal of a people
tracking system is to maintain a persistent identifier for the same person over
time, as long as the person remains visible in the scene and while bridging short
moments of occlusion.

Different multi-target data association and tracking algorithms have been
studied in the context of person tracking. Simpler algorithms such as the Nearest-
Neighbor Standard Filter (NNSF), Global Nearest Neighbor (GNN) [4, 22] or
Nearest-Neighbor Joint Probabilistic Data Association (NNJPDA) [3] make hard
data association decisions, whereas other variants including the Joint Proba-
bilistic Data Association Filter (JPDAF) [27] use soft assignments. All of these
methods are single-hypothesis algorithms that at the end of each tracking cycle,
only keep the most likely data association hypothesis in memory. In contrast,
multi-hypothesis tracking approaches (MHT) [25, 8, 1, 12] use a hypothesis tree
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which allows to correct wrong initial decisions at a later point in time. This,
however, comes at the price of higher computational complexity and complex
implementation.

4.1 ROS Message Definitions

As in the detection case, we tried to keep the message definitions for people
tracking as generic as possible such that they can be re-used across a large vari-
ety of different people tracking algorithms. In the following sections, we illustrate
concrete implementations that we have experimented with during the project,
all of which yield the following output.

ATrackedPerson, according to our definition, possesses the following attributes:

– track id [uint64]: An identifier of the tracked person, unique over time.

– is matched [bool]: False if no matching detection was found close to the
track’s predicted position. If false for too long, the track usually gets deleted.

– is occluded [bool]: True if the person is physically occluded by another per-
son or obstacle. False if the tracking algorithm cannot determine this.

– detection id [uint64]: If is matched is true, the unique ID of the detection
associated with the track in the current tracking cycle. Otherwise undefined.

– pose [geometry msgs/PoseWithCovariance]: The position and orientation of
the tracked person in metric 3D space, along with its uncertainty (expressed
as a 6 × 6 covariance matrix). The pose is relative to the coordinate frame
specified in the TrackedPersons message (see below).

– twist [geometry msgs/TwistWithCovariance]: The linear and possibly angu-
lar velocity of the track, along with their uncertainties.

– age [duration]: The time span for which this track has existed in the system.

The TrackedPersons message aggregates all TrackedPerson instances that are
currently being tracked:

– header [std msgs/Header]: The coordinate frame is usually a locally fixed
frame that does not move with the robot, such as “odom”. The timestamp
is copied from the incoming DetectedPersons message; this is important to
synchronize DetectedPersons and TrackedPersons messages to be able to
look up details about a DetectedPerson identified by its detection id.

– tracks [array of TrackedPerson]: All persons that are being tracked in the
current tracking cycle, including occluded and unmatched tracks.
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4.2 People Tracking Algorithms Used in Our Experiments

During the SPENCER project, we have conducted experiments with different
person tracking algorithms of varying complexity. Next to a computationally
cheap nearest-neighbor algorithm which we will describe in the following section,
we converted an existing hypothesis-oriented multi-hypothesis tracker from our
past work [1, 17] into a ROS package4 to exploit the visualization capabilities
and interchangeability of detectors of our framework. Further experiments were
conducted using a vision-based track-oriented multi-hypothesis tracker5 [12].

A detailed study of which person tracking algorithm to choose under which
circumstances is subject of our ongoing research. We believe that in general,
the choice of models (e. g. for motion prediction, occlusion handling, inclusion
of visual appearance) has a greater influence on overall tracking performance
than the tracking algorithm itself. Here, various methods have been proposed in
the past, e. g. the use of a motion model influenced by social forces [19], adapt-
ing occlusion probabilities and motion prediction within groups [17], improved
occlusion models [16], or an online-boosted RGB-D classifier that learns to tell
apart tracks from background or other tracked persons [18, 22].

4.3 Example: Nearest-Neighbor Tracker

As an illustrative example, we show how a person tracking system can be imple-
mented using a very simple nearest-neighbor standard filter, for which the full
code is provided online. Combined with the extensions discussed in the following
section, the system can in most situations already track persons more robustly
than other publicly available ROS-based people tracking implementations that
we are aware of (e. g. in wg-perception/people).

The nearest-neighbor data association method greedily associates a detection
with the closest (existing) track, if that track’s predicted position is closer than
a certain gating threshold. While not as robust as more advanced methods like
multi-hypothesis tracking (MHT), it is very simple to implement and real time-
capable even with a high number of tracks (up to 40–80). In our experience, such
single-hypothesis methods deliver satisfactory results if there are not too many
closely spaced persons in the scene and the detector has a relatively low false
alarm rate and high recall, which can also be achieved by fusing information
from multiple detectors in different modalities (Sec. 6).

A new tracking cycle starts once a new, and potentially empty, set of De-
tectedPersons is received by the tracker from the detector. The resulting actions
that are performed are summarized in the following ROS callback:

People Tracking Workflow

1 void newDetectedPersonsCallback(DetectedPersons& detections)

2 {

4 Not (yet) publicly available due to open questions on licensing.
5 ROS version to be made available in the rwth pedestrian tracking package.
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3 transformIntoFixedFrame(detections);

4 predictTrackStates();

5 predictMeasurements();

6 Pairings pairings = performDataAssociation(m_tracks, detections);

7 updateTrackStates(pairings);

8 initNewTracks(detections, pairings);

9 deleteObsoleteTracks();

10 }

First, in line 3, all detections are transformed into the locally fixed “odom”
coordinate frame, by looking up the robot’s current position in the world as
reported by odometry using the tf library. The states of all existing tracked
persons – internally represented as a 4D vector (x, y, ẋ, ẏ) of position and velocity
– are predicted into the future (line 4), e. g. using a Kalman Filter, and converted
into measurement predictions by dropping their velocity components (line 5).
Then, an association matrix is constructed which contains the distance between
predicted and real measurement position for each possible pairing of detections
and tracks. This usually involves a gating step in which incompatible pairings are
discarded beforehand. The nearest-neighbor standard filter then starts searching
for the pairing with minimum distance until all tracks and/or detections have
been associated. In line 7, the states of all matched tracks are updated with the
position of the associated detection, or in the case of an unmatched track, the
state prediction is used as the new state. Finally, new tracks are initialized from
detections that could not be associated with any track (line 8). Tracks that have
not been associated with a detection for too long (i. e. occluded) are deleted.

4.4 Improving Robustness of Tracking

For more robust tracking of maneuvering persons, we extended this tracking
method with an interacting multiple models (IMM) approach that dynamically
mixes four different motion models depending on the evolution of a tracked per-
son’s trajectory and the prediction error: 1) A constant velocity (CV) model with
low process noise, 2) a CV model with high process noise, 3) a Brownian mo-
tion model, 4) a coordinated-turn model. In lab experiments, this combination
helped to reduce the number of track losses caused by abruptly stopping or turn-
ing persons, without us having to manually tune process noise levels, especially
in smaller or very crowded environments where motions are less linear.

Our implementation also optionally subscribes to a second DetectedPersons
ROS topic, on which detections of a high-recall, low-confidence detector (e. g. a
primitive laser blob detector) can be published. After regular data association, we
perform another round of data association on these detections only with tracks
that have not yet been associated with a detection (from the high-precision de-
tector). This simple modification can improve tracking performance significantly
if the main detector has a low sensitivity.

Finally, an implementation of a track initialization logic as described in [6]
helps to prevent false track initializations in case of spurious misdetections.
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Launching the People Tracker

The nearest-neighbor tracker implementation comes with a launch file configured
with parameters that yielded good results in our test cases. We recommend the
reader to copy this launch file and use it as a starting point for own experiments:

roslaunch srl_nearest_neighbor_tracker nnt.launch

4.5 Tracking Metrics

For performance evaluations, we wrapped two publicly available Python imple-
mentations of the CLEAR MOT [5] and OSPA [26] multi-target tracking metrics
into ROS nodes that follow our message conventions. These metrics are helpful
for tuning parameters of the tracking system, as well as evaluating completely
new tracking algorithms. They assume that annotated groundtruth tracks are
given in the form of time-synchronized TrackedPersons messages, and can be
found in the spencer tracking metrics package.

5 Group Tracking

For socially compliant navigation, which is the main research objective in the
SPENCER project, tracking just individual persons is not sufficient. If the task
of the robot is to guide a group of persons through a shopping mall or an airport,
or to avoid crossing through groups of people, knowledge of groups in the sur-
roundings is important. In the latter case, we regard as a group a closely spaced
formation of standing or walking persons. In the former case, a more long-term
definition of group might be necessary, in which a person can, for instance, briefly
leave the formation to avoid opposing traffic before re-joining the group.

Group tracking has been studied before in the computer vision community
on photos and movies [29, 9, 7]. Methods have also been developed for group
tracking using overhead cameras in the context of video surveillance [30, 23, 14,
24]. For people tracking on mobile robots in a first-person perspective, a multi-
model multi-hypothesis tracker for groups has been proposed by Lau et al. [13],
which was extended by Luber and Arras [17] and Linder and Arras [15].

In the following, we outline a few basic principles for online group detection
and tracking, and describe sample code that we provide online.

5.1 Social Relation Estimation

Before detecting groups, we first estimate the pairwise social relations of all
tracked persons by feeding the output of the people tracker into a social rela-
tion estimation module. This module, based upon the work described in [15],
builds a social network graph as shown in Fig. 6 (left), where the edge weights
encode the likelihood of a positive social relation between a pair of persons.
To estimate these likelihoods, we rely on coherent motion indicators, which are
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motion-related features that were found to indicate group affiliation between
people in large-scale crowd behavior analysis experiments [20]. They consist of
relative spatial distance, difference in velocity and difference in orientation of
a given pair of tracks. Using a probabilistic SVM classifier trained on a large
dataset annotated with group affiliations, these features are mapped to a social
relation probability that indicates the strength of the relation. This method al-
lows for an easy integration of additional social cues (such as persons’ eye gaze,
body pose) in the future. An implementation and a trained SVM model are
provided in the spencer social relations package. Figure 7 shows the corre-
sponding SocialRelation and SocialRelations ROS messages that constitute the
resulting social network graph.

Fig. 6. Left: Example of a social network graph, where the edge weights encode the
likelihood of a positive social relation between persons. Colored circles below each per-
son indicate resulting group affiliations and grey covariance ellipses visualize position
uncertainty. Right: Three different groups that are being tracked in RGB-D.

SocialRelation

+ type [string]

+ strength [float32]

+ track1_id [uint64]

+ track2_id [uint64]

SocialRelations

+ header [std_msgs/Header]

+ elements [array of SocialRelation]

TrackedPerson

+ ...

2 0..* 1

Fig. 7. Message definitions for the social network graph. The strength of a social rela-
tion is specified as a real number between 0.0 and 1.0. The type string can be used to
distinguish between different types of relations, e. g. spatial, family or romantic.

5.2 Group Detection and Tracking

To detect groups, we perform graph-cutting in the social network graph by re-
moving all edges below a fixed edge weight threshold. The remaining connected
components of the graph then become the resulting groups.
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A simple group tracking algorithm can now be implemented by treating
groups as separate entities, and tracking their centroids. This data association
might fail if the group splits apart very suddenly, causing a large shift in the
resulting new centroids. Alternatively, it is possible to track just the composition
of a group, in terms of its individual group members, and then keep a memory of
previously seen group configurations. This works as long as at least one person
in the group is always visible. A simple Python-based implementation of this
approach can be found in the spencer group tracking package. The output is
in the form of TrackedGroups messages, as outlined in Fig. 8.

In ongoing research shown in Fig. 6 (right), we use a more complex approach
which interleaves a group-level data association layer with regular person-level
data association in a multi-model multi-hypothesis tracker [17, 15]. By explicitly
modelling group formation in terms of merge and split events, groups can be
tracked more robustly. Internally, a prototype of this system has already been
integrated with our visualization and detection framework and yielded good
experimental results. While currently not publicly available, this system uses
exactly the same message interfaces as the provided Python code.

TrackedGroup

+ group_id [uint64]

+ age [duration]

+ centerOfGravity [geometry_msgs/PoseWithCovariance]

+ track_ids [array of uint64]

TrackedGroups

+ header [std_msgs/Header]

+ groups [array of TrackedGroup]

TrackedPerson

+ ...

0..* 11..* 1

Fig. 8. Message definition for a single tracked group, a collection of all tracked groups
in one cycle, and their relation towards tracked persons.

6 Multi-Modal Tracking

In this section, we describe how we can fuse the output of multiple detectors,
potentially operating in different sensor modalities, to make people tracking
more robust and extend the robot’s field of view. A broad overview of different
strategies for fusing multi-modal detections for general tracking purposes is given
in [4]. Here, we mainly focus on fusion at the detection level, as track-to-track
fusion involves associating two or more trajectories with each other, which is
computationally more complex and not straightforward. Our framework allows
for two different fusion strategies at the detection level, namely detection-to-
detection and detection-to-track fusion.

6.1 ROS Message Definitions

To keep a memory of which detections have been fused together, we define a
CompositeDetectedPerson message (Fig. 9). Retaining this information is es-
sential for components at later stages in the perception pipeline, like a human
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attribute classifier that takes as an input the regions of interest found by a vision-
based person detector. If these ROIs likewise bear a corresponding detection ID,
they can later on be associated with the correct tracked person such that the
extracted information can be smoothed over time.

CompositeDetection

+ composite_detection_id [uint64]

+ mean_confidence [float64]

+ min_confidence [float64]

+ max_confidence [float64]

+ pose [geometry_msgs/PoseWithCovariance]

CompositeDetections

+ header [std_msgs/Header]

+ elements [array of CompositeDetection]

DetectedPerson

+ ...

0..* 1

+ original_detections [array of DetectedPerson]

1..* 1

Fig. 9. Message definitions for composite detections. Retaining the information which
original detections have been combined into a composite detection or a track is impor-
tant for perception components at later stages in the pipeline.

In order to provide all of our fusion components with a streamlined, homoge-
nous interface, we initially convert all DetectedPersons messages into Compos-
iteDetectedPersons via a converter node, even if there is only a single Detected-
Person involved. This allows for easy chaining of the components.

6.2 Strategies for Fusion at the Detection Level

Detection-to-Detection Fusion Fusing detections to detections has got the
advantage that the resulting composite detections can be fed into any exist-
ing (unimodal) tracking algorithm, without requiring special provisions to cope
with information from multiple detectors. This approach can also be helpful if
the tracking algorithm itself is computationally very complex and scales badly
with the number of detections. For detection-to-detection fusion, we have im-
plemented a series of nodelets6 which can be used to flexibly compose a fusion
pipeline by means of roslaunch XML files:

– Converter nodelets for converting DetectedPersons messages into Compos-
iteDetectedPersons messages, and vice versa.

– Aggregator nodelets which simply concatenate two sets of CompositeDetect-
edPersons. Useful for combining detections from sensors with non-overlapping
fields of view, in which case no data association is required.

– Fusion nodelets that perform data association between two sets of Composite-
DetectedPersons, e. g. using a nearest-neighbor data association technique.

6 A powerful mechanism to dynamically combine multiple algorithms into a single
process with zero-copy communication cost. See http://wiki.ros.org/nodelet.
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Detection-to-Track Fusion Although presently not realized, our framework
also allows for detection-to-track fusion. As the tracker’s knowledge of a track’s
previous trajectory can help with the association of the incoming detections,
this approach may provide better results in case of very crowded environments.
In this case, the fusion stage needs to be implemented within the tracker itself.
It then becomes the tracker’s responsibility to publish a corresponding Com-
positeDetectedPersons message to let other perception components know which
original detections have been fused.

6.3 Post-Processing Filters

Often, higher-level reasoning components are not interested in all tracks that
are output by the people tracking system. Therefore, we provide a series of
post-processing filters for TrackedPersons messages such that the output, for
instance, only includes visually confirmed tracks, non-static persons, or the n
persons closest to the robot (useful for human-robot interaction). These are
implemented in spencer tracking utils and can be set up in a chain if needed.

6.4 Multi-Modal People Tracking Setup on the Robot

On the robot platform, we run the front laser detector, the front upper-body
RGB-D detector, the front HOG detector, and the fusion-related nodes on a
single laptop. Likewise, the detectors for the rear-oriented sensors are executed
on the second laptop, as well as the people tracking system itself. The lower
RGB-D sensor on each side is tilted downwards and currently only used for
close-range collision avoidance. Since all components, including the laser-based
segmentation as a pre-processing step, are implemented as individual ROS nodes,
they are separate system processes and therefore automatically make full use of
modern multi-core CPUs.

Figure 10 shows a configuration which we used during experiments with our
robot platform. Due to the flexible configuration in roslaunch XML files, differ-
ent setups can easily be tested without modifying any source code. Of course,
if the used people tracker implementation directly supports multiple detection
sources, most of the detection-to-detection fusion stage can be left out (up to a
possible aggregation of front and rear detections). We also ran experiments with
an integrated person- and group tracker [15] that combines all of the steps in
the tracking stage in order to feed back information from group-level tracking
into person tracking, while still publishing TrackedPersons, SocialRelations and
TrackedGroups messages. In all these cases, the remaining components including
detectors, visualization, post-processing filters and evaluation metrics can still
be used as-is.

6.5 Exemplary Launch File

As an inspiration for own experiments, we provide a launch file for the multi-
modal people tracking setup that we used on our robot:
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Rviz

Front RGB-D HOG

Rear RGB-D HOG

Front RGB-D upper body

Rear RGB-D upper body

Front laser

Rear laser

NN-Fuser

DETECTORS DETECTION FUSION STAGE TRACKING STAGE

People tracker

Social relations

estimation

Group tracker

Front laser (high-recall)

Rear laser (high-recall)

Aggregator

VISUALIZATION

TrackedPersonsDetectedPersons TrackedGroups SocialRelations
SVG 

export

NN-Fuser

NN-Fuser

NN-Fuser

Aggregator

SENSOR DRIVERS

Front RGB-D Rear RGB-DFront laser Rear laser

Fig. 10. A possible multi-modal people and group detection and tracking architecture
that can be configured using our framework. Arrows represent ROS message flows.
This setup was used during experiments on the SPENCER robot platform. Rounded
rectangles represent reusable components that can be run as separate ROS nodes, and
therefore easily be distributed across different computers. Connections between nodes
are configured entirely in roslaunch XML without having to modify source code.

roslaunch spencer_people_tracking_launch tracking_on_robot.launch

Alternatively, we provide a launch file that just uses a single RGB-D sensor:

roslaunch spencer_people_tracking_launch

tracking_single_rgbd_sensor.launch height_above_ground:=1.6

7 Visualizing the Outputs of the Perception Pipeline

Powerful visualization tools can be of great help when analyzing the performance
of a complex perception pipeline. The standard visualization tool for sensor data
which is shipped with ROS is RViz, which uses the feature-rich OGRE graphics
engine as its visualization backend. The core idea behind RViz is that it provides
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different visualization plugins (displays) for different types of ROS messages,
e. g. sensor msgs/LaserScan or nav msgs/Odometry.

In general, RViz provides two ways of implementing custom visualizations:

– Markers and marker arrays, using existing displays provided by RViz and
message types from the visualization msgs package. They allow to easily
display primitives such as lines, triangles, texts, cubes or static 3D meshes.
The pose, dimensions and color of the shape are specified within the message
itself, published by a ROS node in any supported programming language.

– RViz plugins, written in C++, can benefit from the entire set of capabilities
offered by the OGRE graphics engine. As each display comes with a prop-
erty panel based on the UI framework Qt, they can easily be customized
within the RViz user interface. RViz automatically takes care of persisting
any settings when the user saves the configuration, which allows to load
entire visualization setups via a single mouse-click.

In our experience, markers allow to quickly implement component-specific
visualizations without requiring much developer effort. On the other hand, RViz
plugins are great for more complex visualizations that are reused often. They
offer a better end-user experience (due to the ability to change settings on-the-fly
inside the RViz GUI) at the cost of larger implementation effort.

7.1 Custom RViz Visualization Plugins

During the course of the SPENCER project, we were often in need of visualizing
the outputs of our people tracking system and changing visualization settings on-
the-fly, for instance during live robot experiments and for demonstration videos
and publications. Therefore, in the spencer tracking rviz plugin package,
we developed a series of custom RViz plugins for displaying detected persons,
tracked persons, social relations, tracked groups and human attributes7. They
are automatically discovered by RViz and include features such as:

– Different visual styles: 3D bounding box, cylinder, animated human mesh
– Coloring: 6 different color palettes
– Display of velocity arrows
– Visualization of the 99% covariance ellipse for position uncertainty
– Display of track IDs, status (matched, occluded), associated detection IDs
– Configurable reduction of opacity when a track is occluded
– Track history (trajectory) display as dots or lines
– Configurable font sizes and line widths

In the Results section in Fig. 14, we show a number of different visualizations
generated using our RViz plugins. For the first row of that figure, we additionally

7 Such as gender and age group, not discussed here in detail.
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used the existing RViz Camera display to project 3D shapes into a camera image.
Examples of the social relations and tracked groups display are shown in Fig. 6,
left and right. As opposed to other RViz displays, these displays subscribe to
two topics at the same time (e. g. social relations and tracked persons).

7.2 URDF Model for Robot Visualization

To visualize the robot in RViz, we built a URDF (Unified Robot Description
Format) file for the SPENCER robot, which defines the different joints of the
platform, including fixed joints at the base of the robot and the sensor mount-
ing points. The robot state publisher and joint state publisher packages
use the URDF to publish a hierarchy of transforms (TF tree) for transforming
between local sensor and robot coordinate frames as shown in Fig. 11 (right).

{R}

x

y

map

odom

base_footprint

base_link

head_pan_link

head_tilt_link

eyes_pan_link

laser_link

rgbd_link

laser_front_link

laser_rear_link

rgbd_front_top_link

rgbd_front_bottom_link

rgbd_rear_bottom_link

rgbd_rear_top_link

stereo_link
stereo_front_left_link
stereo_front_right_link

Fig. 11. Left: Robot models (based upon URDF descriptions) of the SPENCER robot
platform and the mobile data capture platform.Middle: Robot coordinate frame. Right:
Simplified version of the TF hierarchy used on the SPENCER robot.

To create the visual robot model shown in Fig. 11 (left), we used a CAD
model provided by the robot manufacturer and first removed any unnecessary
components inside the robot’s shell that are not visible from the outside using
FreeCAD. We then exported a single Collada (DAE) file for each movable part
and simplified the resulting mesh to reduce its polygon count. This can be done
using software such as MeshLab or 3DS Max. We then manually aligned the
visual parts of the model against the TF links specified in the URDF, by cross-
checking with RViz and the CAD file.

For the mobile data capture platform, we used a point cloud registration
software and an RGB-D sensor that we rotated around the platform at different
azimuths and elevations to generate a visual representation. We built a transform
hierarchy similar to that of the actual robot, to ensure that the same perception
algorithms can be run on recorded and live data without modifications.

7.3 ROS-based SVG Exporters

For the visualization of detected and tracked persons and groups, we additionally
provide a Python script in the srl tracking exporter package for exporting
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scalable vector graphics (SVGs). This is useful to analyze person trajectories
from a 2D top-down view of the scene, which can be animated to display the
evolution of tracks over time. In contrast to videos recorded from Rviz, they
support free zooming to permit the analysis of smaller details (e. g. the cause
of track identifier switches, by looking at the positions of individual detections).
The resulting SVGs (Fig. 12) are best viewed in a web browser such as Chrome.

Fig. 12. Scalable and optionally animated vector graphic showing a 2D top-down view
of a scene with several person tracks and their track IDs. Detections are shown as small
diamonds. Arrowheads symbolize velocity, with the bottom grey track showing robot
odometry. The user can zoom into the SVG to read detection IDs and timestamps.

8 Integration with 3rd-Party Simulation Tools

Often, experimenting with real, recorded data can be cumbersome due to the
need for manual groundtruth annotations and because it can be difficult to cap-
ture or provoke specific situations without scripting the behavior of the agents
in the scene. For example, testing socially compliant motion planning in com-
bination with a real people tracking system (including occlusions) proves to be
difficult from pre-recorded datasets as the sensor position is decided at the time
of recording. Testing on the real robot, however, can bring up its own challenges,
where lack of open space, limited physical access to the robot, hardware issues
or discharged batteries are just a few obstacles to overcome.

8.1 Integration with the Robot Simulator Gazebo

For this reason, we integrated our framework with the robot simulator Gazebo
to generate simulated sensor data of moving persons from a moving robot in
static environments (Fig. 13, left). We simulate 2D laser scan data with a noise
model matching that of the real sensor on the basis of datasheet specifications.

As simulating the environment becomes computationally very complex with
more than a dozen persons in the scene, we disable the Gazebo physics engine
and instead manually update the agents’ and robot’s position at 25 Hz using the
Gazebo ROS API. Person shapes are approximated by static 3D meshes that



People Detection, Tracking and Visualization on a Mobile Robot 21

are processed by a GPU-accelerated raytracing algorithm in Gazebo to simulate
laser scans. The resulting sensor msgs/LaserScan is published on ROS and fed
to our laser-based person detector, and RViz for visualization (Fig. 13, right).

Fig. 13. Left: Positions of simulated pedestrians are constantly sent to the Gazebo
simulator via ROS, which then generates simulated laser scans and again publishes
them via ROS. These simulated laser scans can then be fed into the people tracking
pipeline for synthetic experiments. Right: Moving pedestrians in a ROS adaptation
of PedSim, the pedestrian simulator, visualized in RViz. The pedestrian behavior is
modelled using a social force model from behavioral sciences.

8.2 Integration with the Pedestrian Simulator PedSim

Simulating realistic pedestrian motion behaviors is a research topic of its own.
Here, we use the publicly available PedSim library8, which simulates pedestrian
crowd behaviors using a social force model from behavioral sciences [11]. We
wrapped the library into a ROS node and added an RViz-based visualization of
persons and obstacles using visualization markers (visible in Fig. 13, right). The
positions of the simulated pedestrians are published as TrackedPersons messages,
which can serve as a groundtruth to evaluate tracking performance (see Sec. 4.5).
A separate converter node then sends these positions to Gazebo, where they are
used to position 3D meshes as described in the previous section.

9 Results

In this section, we show qualitative results of our tracking system, discuss run-
time performance and summarize important lessons that we learned during the
project. As research in SPENCER is still going on at the time of this writing,
we are currently preparing a detailed quantitative study of our tracking sys-
tem, including a comparison of different multi-modal tracking approaches, for a
publication at the end of the project.

8 http://pedsim.silmaril.org/
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9.1 Qualitative Results

In Fig. 14, we show illustrative results of our tracking system running on data
recorded with our mobile data capture platform (Fig. 2) during a crowded situ-
ation at an airport, shortly after passengers have disembarked from an airplane.
At the detection stage, we observe that the different detectors (2D laser, RGB-D
upper-body, groundHOG in RGB) complement each other well and significantly
increase the field of view around the robot in which persons can be tracked.
In group guidance scenarios, it can make sense to filter out tracks in a post-
processing step which have not been visually confirmed (shown in different color
in the third row of Fig. 14), as especially the laser-based detector can sometimes
trigger false alarms when objects appear like humans in the laser scan.

Multiple videos which show our tracking system in action on both the real
robot platform and pre-recorded datasets can be found on our YouTube channel9.

9.2 Runtime Performance

Our system runs in real-time at 20–25 Hz using the configuration described in
Sec. 6.4 on two Intel Core i7-4700MQ gaming laptops with 8 GB RAM and
nVidia GeForce GTX 765M graphics10. These laptops are dedicated to percep-
tion tasks on the robot. We avoid expensive streaming of RGB-D images over
network by executing the RGB-D detectors directly on the laptop where the cor-
responding sensor is connected via USB. The computationally most expensive
components are the person detectors, each requiring about one CPU core, with
the people tracker itself requiring only 10–15% of a single CPU core when 20–30
tracks are simultaneously being tracked.

9.3 Lessons Learned

Finally, we want to note down a few points that we learned about ROS and our
hardware during the course of our project:

Parallelization: A complex perception pipeline such as the one developed in
SPENCER requires a high amount of computational power. We learned that
ROS can be a great help here due to its node-based modular structure, which
easily allows to split up complex processing tasks into separate processes that
can be run on different CPU cores or even different computers, without requiring
extensive reconfiguration.

Collaboration: We think it is important to devise mock components early on
in the project to enable other collaborators to test their dependent components.
Due to the multi-language support in ROS, these can be simple Python scripts
that e. g. publish fake detections.

9 http://www.youtube.com/spencereuproject
10 The GPU is only used by the groundHOG person detector. For a single RGB-D

sensor and 2D laser scanner, a single laptop is sufficient.
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Fig. 14. Multi-modal people detection and tracking from a mobile robot in a crowded
airport environment. First row: Color images of the upper rear and front RGB-D
sensors, with projected laser points and bounding boxes of tracked persons. Second row:
Detections of 2D laser (orange boxes), upper-body detector (cyan) and groundHOG
(yellow) on top of front and rear RGB-D and 2D laser point clouds. Fused detections are
shown as grey cylinders. The area visible to the laser scanners is shaded in grey. Third
row: Resulting person tracks. As opposed to blue persons which are only tracked in
laser, red tracks have been confirmed a number of times by one of the visual detectors.
Last row: Tracked groups that were detected via coherent motion indicator features.
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Transform issues: We often had to deal with transform-related issues, which
is natural due to the high number of sensor coordinate frames involved. Here, we
found the tools tf monitor, tf echo, view frames of the tf package as well as
the TF display in RViz to be of great help. Especially the first-mentioned tool
allows to identify latency issues that can arise when the clocks of the computers
on the robot are not properly synchronized, which will cause transform lookups
to fail. The roswtf tool lists unconnected ROS topic subscriptions, which helps
when dealing with over 300 concurrently active topics.

Hardware: In terms of hardware, instead of using gaming laptops onboard
a robot, in the future we would rather use traditional computers with extra
GPU and USB PCIe cards to circumvent the USB bus sharing issues which
we repeatedly encountered with the first-generation RGB-D sensors, since most
laptops nowadays only expose a single USB bus. It might also be worthwhile to
consider using many small-form-factor PCs with integrated GPUs, as opposed
to few high-end computers. Due to the modular structure of ROS, individual
nodes can easily be spread across different computers.

10 Conclusion

In this chapter, we presented a multi-modal, ROS-based people detection and
tracking framework developed for and tested on a large mobile service robot.
We believe that due to its modular structure with clearly defined interfaces
between components, our framework can easily be re-used on other robot plat-
forms equipped with similar sensor configurations. Also, as we found out in our
own research, standardized message interfaces allow to easily replace individual
components of the pipeline, such as the core tracking algorithm, by a different
implementation for comparative purposes. When doing so, the user can leverage
our wide infrastructure of existing visualization, evaluation and simulation tools
to quickly set up a usable tracking system. To our knowledge, the presented peo-
ple tracking framework is the functionally most complete one that is currently
available as open-source ROS software.

In future work, we want to extend our tracking framework with person re-
identification capabilities, the lack of which is currently the most apparent bot-
tleneck when dealing with lengthy occlusions of tracked persons.
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