
Grant agreement no: FP7-600877

SPENCER:
Social situation-aware perception and action for cognitive robots

Project start: April 1, 2013

Duration: 3 years

XXXXXXXXXXDELIVERABLE 5.4XXXXXXXXXX

Off- and on-line learning for socially normative task planning

Due date: month 34 (January 2016)

Lead contractor organization: CNRS

XXXXXXXDissemination Level: PUBLICXXXXXXX

ICT-FP7-600877-SPENCER Deliverable D5.4

Contents

1 Introduction 3

2 Complex Behavior 3
2.1 Combination of Simple Behaviors . 4
2.2 Block of Complex Behaviors . 4

3 Learning complex behaviors 5
3.1 Social constraints during motion planning . 5
3.2 Models . 5
3.3 Experimentation . 6
3.4 Naive Global Planner . 6
3.5 Layered Cost map Navigation . 7

4 Group membership modeling 7

5 Current Work 9

6 Planning considering the learned behaviors 10
6.1 Fast Motion Planning with Any-Angle Path Biasing 10
6.2 Social Navigation exploiting homotopy classes . 10

2

ICT-FP7-600877-SPENCER Deliverable D5.4

1 Introduction

This deliverable addresses the problem of learning complex normative behaviors for robots (task
T5.3) and their on-line adaptation to a variety of situations (task T5.4). Learning complex normative
behaviors aims at finding appropriate compact representations of social situations and to react accord-
ingly. In particular, we develop solutions for approaching and engaging complex entities such as a
group of person. The level of complexity is specified by the nature of the targeted entity ranging from
a single person to a small group of persons (5 to 7 persons).

As in Deliverable D5.1 for simple behaviors learning, we employ Inverse Reinforcement Learn-
ing (IRL) algorithms. The issue here is to collect complex demonstrations and then learn a compact
representation. Two approaches have been proposed: (i) learn from demonstrations a direct map-
ping between social situation assessment and robot motion, (ii) learn from demonstrations and then
generate cost maps in similar way of Deliverable D5.1. The latter allows to encode specific social
constraints, fuse cost maps of different nature such as simple behaviors based, obstacle based. Both
approaches have been designed to explicitly allow on-line adaption to social situation assessment
(task T5.4).

Section 2 describes of the complexity of complex behaviors. Then, Section 3 presents the proce-
dural steps to get a robot approaching a person given some demonstrations.

2 Complex Behavior

This deliverable targets socially normative robot behaviors for navigation and non-verbal interaction
which have been described in the DoW:

• Learning to move efficiently and safely through densely crowded spaces by adhering, for in-
stance, to pedestrian traffic social conventions such as walking on that side of the hallway where
people move in the same direction as the robot, allowing people to overtake that need to rush,
consider people’s viewing direction to choose proper avoidance maneuvers, etc.
• Behave in a ‘group-friendly’ manner. i.e. not cutting through a group or a couple, give wider

berth to a family with small children.
• Complying to etiquette rules in pedestrian traffic such as slowing down for elderly people and

toddlers, not hassle them for overtaking but looking for a good opportunity to safely pass,
leaving priority to elderly people or individuals that carry heavy goods (such as luggage)
• Engaging in interaction with groups through identification of likely spokespersons (through

detection of variables such as age, relative rapport and dominance).
• Taking into account human queues such as going around a queue rather than cutting through,

or cutting through at an acceptable position in the queue. Learning queueing conventions for
joining, standing in and leaving queues.

Simple behaviors have been defined in Deliverable D5.1 as a set of actions that a robot applies in a
given social context. Complex behaviors can be considered as (i) a combination of simple behaviors or
(ii) as a unique block of behaviors. In this line, we frame these approaches as two different schemes:
Combination of Simple Behaviors, Block of Complex Behaviors

3

ICT-FP7-600877-SPENCER Deliverable D5.4

2.1 Combination of Simple Behaviors

The combination of simple behaviors builds upon simple behaviors defined in Task T5.1. For exam-
ple, to reach a pre-defined place, a robot will combine several socially normative behaviors such as
navigation, detecting people, engaging and then interacting (Figure 1). The issue here is to explicitly
learn the combinations by collecting adequate demonstrations and then employing IRL frameworks.

Figure 1: Combination of simple behaviors framework: a robot combines pre-defined simple behav-
iors such as navigation, perception, engagement and interaction.

2.2 Block of Complex Behaviors

This scheme focuses on situations where robots have to generate behaviors that are considered as a
whole. For example, during the approaching scenario (Figure 2), the human and robot continuously
adapt their motion. Modeling such a situation requires to explicitly learn adequate behaviors models
from demonstrations. The block of complex behaviors approach is required for addressing scenarios
such as approaching, engaging and interacting with a group of people.

(a) (b)

Figure 2: Differences in path planning during continuous human and robot motions.

4

ICT-FP7-600877-SPENCER Deliverable D5.4

3 Learning complex behaviors

We describe the framework to learn block of complex behaviors (Subsection 2.2) is used by firstly
describing the individual case: approaching one person. We extend the models to a small group of
person.

3.1 Social constraints during motion planning

In robot navigation, path planners usually minimize time or distance. However, most of the time this
is not the case for social paths, because we usually respect the private and social spaces of a person
or group of people. This topic is handled by Human Aware Navigation [Kruse et al., 2013]. Several
authors [Kruse et al., 2014, Sisbot et al., 2007] have taken into account proxemics as costs and con-
straints in the path planner to obtain acceptable paths with hard-coded proxemics values derived from
social sciences. However, these values are not necessarily relevant for all situations, as they could
depend on the velocities of the people, as discussed in [Luber et al., 2012].

Other works also deal with the topic of approaching humans [Satake et al., 2009, Kato et al., 2015],
but they focus on tackling the problem of task planning, considering pedestrians’ intentions such as
people approaching a robot. Shomin’s work [Shomin et al., 2014] proposes hardcoded waypoints in
order to navigate and interact during collaborative tasks. In this work, we focus in the way the robot
shall move in order to reach an engagement given previous generated demonstrations.

An Inverse Reinforcement Learning (IRL) method enables to learn the policy using a discrete
and finite MDP in which the states are derived from the robot’s relative position and orientation
with respect to the human. Lately, IRL has been shown being used to teach machines to act as
humans do. For example, in the Human Aware Robotics domain, recent works address robot navi-
gation in crowds [Henry et al., 2010, Vasquez et al., 2014]. These examples tackle navigation from
point A to point B while avoiding people, not for approaching them. The closest work to ours
is [Ramon-Vigo et al., 2014] where they develop a method based on IRL for enabling a robot to
move among people and in their vicinity (4mx4m) in a human-like manner.

We specifically address the problem of approaching people to interact with them from a distance
of several meters. This requires a specific model representing the space around the humans and
appropriate trajectories for homing on them. Our work exploits detection and tracking of people
(Task 2.1) for the extraction of features such as position, velocity and orientation.

3.2 Models

The problem was handled by learning from demonstrations. Thus, we use inverse reinforcement
learning (IRL) which is based on the Markov Decision Processes (MDP). The states and features vary
for both planners. The general process summarizing the methodology is depicted next:

1. Definition of the Space-Feature representation

2. Definition of transitions for the MDP modeling

3. Offline learning process given the examples

5

ICT-FP7-600877-SPENCER Deliverable D5.4

4. Online process creating the final results

3.3 Experimentation

A simulator that allows to control both robot and human behaviors was developed. Here, positions and
velocities can be controlled. Then, it is employed to generate trajectories of robot while approaching
humans. The robot is manually controlled during different approaching scenarios.

A set of demonstrations was performed in this experimental platform for the learning process.
The path taken by the robot in different positions with different orientations can be seen in Figure 3.
This represents the path followed by the robot in the human reference frame.

Figure 3: Demonstration of the robot approaching the target person.

3.4 Naive Global Planner

In order to build the state-action vector, first we create a base feature vector based on our number of
states S, as follows Φ(s) = [φ1(s), φ2(s), . . . , φS(s)]. In which φi(s) is a Kronecker delta function
where φi(s) = [i = s] using Iverson bracket notation. In order represent Φ(s, a), the technique used
in [Lagoudakis and Parr, 2003] is applied, creating a feature vector with size of the features is Φ(s),
multiplied by the number of actions. Let’s say a is equal to 2, given the possible 5 actions, then
Φ(s, a) = [0,Φ(s),0,0,0]. Where 0 is a zero vector with the size of Φ(s).

The result of this IRL provides the rewards to the MDP, and by applying the optimal navigation
policy in this MDP, the robot moves along the sequence of states which form the optimal trajectory
to approach a person. Each state (e.g., cell in the representation described in the previous section)
is represented by its center. As a result the trajectory is a discontinuous line as shown in green in
Figure 4(b). We hence need to smooth this trajectory taking into account the robot orientation and
human orientation. This is developed in next and it is also shown in Figure 4(b). These trajectories are
the global plan, nonetheless they do not take into account other constraints such as obstacle avoidance.
The result in the simulated scenario is depicted in Figure 4(a).

6

ICT-FP7-600877-SPENCER Deliverable D5.4

(a)

MDP solution

LS approximation

Bézier approximation

(b)

Figure 4: a) Proposed path to approach the person. Violet line: MDP resolution in a deterministic
or the most probable transition case. Green line: fitted curved treated with least squares and Bézier
lines.b) IRL post-processing. The green line represent the result of the MDP. The black line represents
the least square approximation as a parametric function in x and y. The red line is a Bézier curve
created from the set of points of this parametric function and the initial orientation of the robot.

3.5 Layered Cost map Navigation

The main difference with the previous case is the use of continuous state features. From this learning,
we build a cost map from which navigation is made possible.

Since the states taken into account correspond to the polar human representation, we set n number
of random points in the environment within a range for each axis of rd = [0, 14] and rθ = [−π, π),
where r represents range. This draw can be seen as the points in Figure 5(b) and they represent the
mean in the 2D gaussian used for the RBF. As for the value of the standard deviation, all RBF bins
have the same value which is a quarter of the range for each axis. Thus, the vector state representation
is Φ(s) = [φ1(scoord), φ2(scoord), . . . , φn(scoord)], where φi(scoord) is the ith RBF and scoord is the
cartesian center of the state s. Then we set Φ(s, a) = Φ(s) given than it is intended to use this
information in a cost map, which is only represented by the states and not the actions, differently
from Naive Global Planner.

For the Layered Cost map methodology, after the learning process the weight vector w is set. One
important point is that Φ(s, a) = Φ(s) and s is represented by spatial features. Thus, a cost map can
be generated in the environment. Figure 5(b) shows a cost map like result of the demonstrations given
in Figure 3, this is feasible due to the representation of features as continuous functions. Even when
we have discrete states, the values of the coordinate system is in < for distance and angle. The result
in the simulated scenario is depicted in Figure 5(a).

4 Group membership modeling

To learn how to approach a group of people, we introduced a group membership metric. The aim
is to continuously evaluate the structure of the group including the robot. Figure 6 depicts a robot
approaching a group of people where it forms links with each group member. From a set of demon-

7

ICT-FP7-600877-SPENCER Deliverable D5.4

(a) (b)

Figure 5: a) Layered Cost map Navigation with IRL learned layer. b) Layered Cost map Navigation:
Cost map generated with wTΦ(s) in an unfolded polar map. The blue + signs represent the center of
all the RBF used in this task.

strations, we optimize the values of this graph. Several approaches have been investigated for the
estimation of the graph using relative position or velocity. Of particular interest, we developed a
global method exploiting synchrony [Delaherche et al., 2012] of individual behaviors, described by
their position and velocity, during a given window analysis. Here, each individual has been modeled
as a polygon representing a projection in a 2D plane of the binocular vision in the human field of
view (124◦) limited by the personal distance described in proxemics (1.2m). We exploit intersection
of these fields of view.

Robot

Figure 6: Links of relationship.

To model dynamics of groups such as forming, we employ a forgetting mechanism inspired by
the Ebbinghaus forgetting curve [Ebbinghaus, 1913] with some adaptation for the learning of the
parameters. The forgetting function is expressed as:

R = e−
t
S (1)

Where R is the memory retention, t is time and S is a relative strength of memory.

Learning is then performed with a forgetting mechanism estimated from the group membership
models (i.e. the relationship between people). A demonstration of how learning and forgetting mech-
anisms are changing during time is shown in Figure 7.

In Figure 8(a) and Figure 8(b) we can see one of the results of this algorithms evaluated in simula-
tion with the social force model [Helbing and Molnar, 1995] and with a manually annotated database
[Alameda-Pineda et al., 2015].

8

ICT-FP7-600877-SPENCER Deliverable D5.4

Figure 7: Learning and Forgetting mechanisms for graph modeling with different timing parame-
ters. Dotted lines represent forgetting mechanisms with several different factors and continuous line
representing learning with different learning factors.

(a)

(b)

Figure 8: a) A frame of this metrics analysis evaluated with the SALSA database
[Alameda-Pineda et al., 2015]. b) The metrics is tested with a simulated environment based on social
forces.

5 Current Work

So far, we developed computational models for learning adequate robot behaviors for approaching
and engaging individuals from demonstrations. The framework proposed allows to achieve learning
(Task 5.3) and on-line adaptation (Task 5.4). Description and evaluation of two models have been

9

ICT-FP7-600877-SPENCER Deliverable D5.4

submitted to IEEE RO-MAN 2016. Currently, we are extending the framework to tackle the problem
of approaching and adapting to the dynamics of group of people.

6 Planning considering the learned behaviors

To execute the learned complex behaviors we encode them in cost-maps which could be fed into mo-
tion and path planners. Different planning strategies could be used. ALU-FR recently introduced two
algorithms [Palmieri et al., 2015, Palmieri et al., 2016] that generate a path or trajectory according to
a given cost-map: namely Theta*-RRT and RHCF.

Theta*-RRT is a fast variant of RRT that, by exploiting a path biasing technique, generates a
kinodynamic compliant trajectory over cost-maps.

RHCF is an efficient randomized approach (based on weighted random walks) that finds a set
of K paths lying in distinct homotopy classes: having a set of diverse paths (belonging to different
homotopy classes) is an appealing strategy to deal with unexpected obstacles and quickly react to
dynamic world’s changes in robot motion planning.

6.1 Fast Motion Planning with Any-Angle Path Biasing

In [Palmieri et al., 2016] ALU-FR introduces Theta*-RRT. The approach is a variant of RRT that
generates a trajectory by expanding a tree of geodesics toward sampled states whose distribution
summarizes geometric information of the any-angle path.

Theta*-RRT, see the algorithm in Fig.6.1, first generates a geometrically feasible any-angle path
P using only geometric information about the workspace. Then, it computes the trajectory by growing
a tree τ of smooth local geodesics around path P (path-biasing heuristic) satisfying the system’s non-
holonomic constraints. It repeatedly samples a state xrand mainly from a subspace centered around
path P. It then makes xrand a new tree vertex and connects it to xnearnd, which is selected among
several ones as the vertex that connects with minimum cost (that syntheses the learned behavior)
to xrand. It was shown experimentally, for both a differential drive system and a high-dimensional
truck-and-trailer system, that Theta*-RRT finds shorter trajectories significantly faster than four base-
line planners (RRT, A*-RRT, RRT*, A*-RRT*) without loss of smoothness, while A*-RRT* and
RRT* (and thus also Informed RRT*) fail to generate a first trajectory sufficiently fast in environ-
ments with complex nonholonomic constraints. Moreover it has been proven that Theta*-RRT retains
the probabilistic completeness of RRT for all small-time controllable systems that use an analytical
steer function.

6.2 Social Navigation exploiting homotopy classes

In [Palmieri et al., 2015] ALU-FR introduces and shows preliminary results of a fast randomized
method, named as RHCF, that finds a set of K paths lying in distinct homotopy classes. The path
planning task is framed as a graph search problem, where the navigation graph is based on a Voronoi
diagram. The search is biased by a the cost function derived from the social force model (or learned
off-line that encodes social complex behaviors) that is used to generate and select the paths. The ap-

10

ICT-FP7-600877-SPENCER Deliverable D5.4

obstacle

pi

W

pi+2

pi+1

x x′

Figure 9: Path-biased sampling strategy. Right: Example strip (in grey) around an any-angle path
(in orange), in which samples are randomly generated. Black arrows are samples, and green arrows
are their projections onto the any-angle path. Blue sectors are the angular ranges from which the
sample orientations are drawn. The mean sector orientations are computed as weighted averages of
the orientations of the any-angle path segments. The individual weight contributions are evaluated in
geodesic path coordinates along the offset black line. Left: Resulting mean orientations around an
example any-angle path

Figure 10: Theta*-RRT algorithm.

proach is compared to Yens algorithm, and after an empiric evaluation it was shown that the approach
is faster to find a subset of homotopy classes. Furthermore RHCF computes a set of more diverse
paths with respect to the baseline while obtaining a negligible loss in path quality.

11

ICT-FP7-600877-SPENCER Deliverable D5.4

G

Figure 11: An example path selected from the K best homotopy classes in the Voronoi diagram. The
robot is enclosed in the black circle, in red the path selected to reach the goal position G. The black
Voronoi diagram describes the possible ways to go through a crowd by implicitly encoding different
homotopy classes.

References

[Alameda-Pineda et al., 2015] Alameda-Pineda, X., Staiano, J., Subramanian, R., Batrinca, L., Ricci,
E., Lepri, B., Lanz, O., and Sebe, N. (2015). SALSA: A Novel Dataset for Multimodal Group
Behaviour Analysis.

[Delaherche et al., 2012] Delaherche, E., Chetouani, M., Mahdhaoui, A., Saint-Georges, C., Viaux,
S., and Cohen, D. (2012). Interpersonal Synchrony: A Survey of Evaluation Methods across
Disciplines. IEEE Transactions on Affective Computing, 3(3):349–365.

[Ebbinghaus, 1913] Ebbinghaus, H. (1913). Memory: A contribution to experimental psychology.
Number 3. University Microfilms.

[Helbing and Molnar, 1995] Helbing, D. and Molnar, P. (1995). Social force model for pedestrian
dynamics. Physical review E, 51(5):4282.

[Henry et al., 2010] Henry, P., Vollmer, C., Ferris, B., and Fox, D. (2010). Learning to navigate
through crowded environments. In 2010 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 981–986.

[Kato et al., 2015] Kato, Y., Kanda, T., and Ishiguro, H. (2015). May I Help You?: Design of Human-
like Polite Approaching Behavior. In Proceedings of the Tenth Annual ACM/IEEE International
Conference on Human-Robot Interaction, HRI ’15, pages 35–42, New York, NY, USA. ACM.

[Kruse et al., 2014] Kruse, T., Kirsch, A., Khambhaita, H., and Alami, R. (2014). Evaluating direc-
tional cost models in navigation. In Proceedings of the 2014 ACM/IEEE international conference
on Human-robot interaction, pages 350–357. ACM.

[Kruse et al., 2013] Kruse, T., Pandey, A. K., Alami, R., and Kirsch, A. (2013). Human-aware robot
navigation: A survey. Robotics and Autonomous Systems, 61(12):1726–1743.

12

ICT-FP7-600877-SPENCER Deliverable D5.4

[Lagoudakis and Parr, 2003] Lagoudakis, M. G. and Parr, R. (2003). Least-squares policy iteration.
The Journal of Machine Learning Research, 4:1107–1149.

[Luber et al., 2012] Luber, M., Spinello, L., Silva, J., and Arras, K. (2012). Socially-aware robot nav-
igation: A learning approach. In 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 902–907.

[Palmieri et al., 2016] Palmieri, L., Koenig, S., and Arras, K. O. (2016). Rrt-based nonholonomic
motion planning using any-angle path biasing. In Proc. of ICRA 2015, Stockholm, Sweden.

[Palmieri et al., 2015] Palmieri, L., Rudenko, A., and Arras, K. O. (2015). A fast random-
ized method to find homotopy classes for socially-aware navigation. In Proc. of IROS 2015,
Workshop on Assistance and Service Robotics in a Human Environment, Hamburg, Germany,
http://arxiv.org/abs/1510.08233.

[Ramon-Vigo et al., 2014] Ramon-Vigo, R., Perez-Higueras, N., Caballero, F., and Merino, L.
(2014). Transferring human navigation behaviors into a robot local planner. In Robot and Hu-
man Interactive Communication, 2014 RO-MAN: The 23rd IEEE International Symposium on,
pages 774–779. IEEE.

[Satake et al., 2009] Satake, S., Kanda, T., Glas, D., Imai, M., Ishiguro, H., and Hagita, N. (2009).
How to approach humans?-strategies for social robots to initiate interaction. In 2009 4th
ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages 109–116.

[Shomin et al., 2014] Shomin, M., Vaidya, B., Hollis, R., and Forlizzi, J. (2014). Human-
approaching trajectories for a person-sized balancing robot. In 2014 IEEE Workshop on Advanced
Robotics and its Social Impacts (ARSO), pages 20–25.

[Sisbot et al., 2007] Sisbot, E., Marin-Urias, L., Alami, R., and Simeon, T. (2007). A Human Aware
Mobile Robot Motion Planner. IEEE Transactions on Robotics, 23(5):874–883.

[Vasquez et al., 2014] Vasquez, D., Okal, B., and Arras, K. O. (2014). Inverse Reinforcement Learn-
ing algorithms and features for robot navigation in crowds: An experimental comparison. In
Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, pages
1341–1346. IEEE.

13

RRT-Based Nonholonomic Motion Planning
Using Any-Angle Path Biasing

Luigi Palmieri Sven Koenig Kai O. Arras

Abstract— RRT and RRT* have become pop-
ular planning techniques, in particular for high-
dimensional systems such as wheeled robots with
complex nonholonomic constraints. Their planning
times, however, can scale poorly for such robots,
which has motivated researchers to study hierarchical
techniques that grow the RRT trees in more focused
ways. Along this line, we introduce Theta*-RRT that
hierarchically combines (discrete) any-angle search
with (continuous) RRT motion planning for non-
holonomic wheeled robots. Theta*-RRT is a variant of
RRT that generates a trajectory by expanding a tree
of geodesics toward sampled states whose distribution
summarizes geometric information of the any-angle
path. We show experimentally, for both a differen-
tial drive system and a high-dimensional truck-and-
trailer system, that Theta*-RRT finds shorter trajec-
tories significantly faster than four baseline planners
(RRT, A*-RRT, RRT*, A*-RRT*) without loss of
smoothness, while A*-RRT* and RRT* (and thus also
Informed RRT*) fail to generate a first trajectory
sufficiently fast in environments with complex non-
holonomic constraints. We also prove that Theta*-
RRT retains the probabilistic completeness of RRT
for all small-time controllable systems that use an
analytical steer function.

I. Introduction

Any-angle search is a family of discrete search tech-
niques which, unlike A* or Dijkstra’s algorithm, find
paths that are not constrained to grid edges. Daniel et
al. [1] introduce Theta*, an any-angle search technique
whose paths are only slightly longer than true short-
est paths. The authors show that the basic variant of
Theta* finds shorter paths than Field D*, A* with post
smoothing and A* on grids, see Fig. 2. Rapidly exploring
Random Trees (RRT) [2] is a sampling-based motion
planner that expands trees in the state space toward
newly sampled states. An optimal variant, RRT* [3],
rewires the trees based on the notion of cost. To improve
the performance of sampling-based motion planners, re-
cent research has combined them with discrete search
techniques [4, 5, 6, 7]. None of these studies, however,
combine any-angle search with RRT variants although
its properties (such as finding shorter paths than A*
with fewer heading changes) are likely beneficial for the
performance of the combination.

L. Palmieri and K.O. Arras are with the Social Robotics Lab,
Dept. of Computer Science, University of Freiburg, Germany,
{palmieri,arras}@cs.uni-freiburg.de. Kai Arras is also with Bosch
Corporate Research.

S. Koenig is with the IDM Lab, Dept. of Computer Science,
University of Southern California, USA, skoenig@usc.edu.

S

G

S

G

Fig. 1. Theta*-RRT trees in two example environments used in
the experiments. Left: Maze environment. Right: Random map
environment. The trees (in blue) grow smoothly towards the goal
in a subspace centered around the any-angle path (in red).

In this paper, we present Theta*-RRT with the ob-
jective of rapidly generating smooth and short trajecto-
ries for high-dimensional nonholonomic wheeled robots.
Theta*-RRT is a hierarchical technique that combines
(discrete) any-angle search with (continuous) RRT mo-
tion planning. It improves the efficiency of RRT in
high-dimensional spaces substantially by transferring the
properties of the any-angle path to the final trajectory.
Theta*-RRT considers a continuous control space dur-
ing planning: It uses steer functions instead of random
control propagations to exploit as much knowledge of
the nonholonomic constraints of the system as possible
and to ensure both high planning efficiency and high
trajectory quality. Since heuristics can also be mislead-
ing and degrade planning performance, we prove that
Theta*-RRT retains the probabilistic completeness of
RRT for all small-time controllable systems that use an
analytical steer function. We evaluate the approach using
a 3D differential drive robot and a 8D truck-and-trailer
system. We compare it to four baseline planners: RRT,
RRT* (and thus also Informed RRT* [8] which behaves
like RRT* until a first trajectory is found), A*-RRT, and
A*-RRT* [7]. The evaluation shows that Theta*-RRT
is significantly faster and produces shorter high-quality
trajectories than those of the baselines.

The paper is structured as follows: We describe related
work in Sec. II and Theta*-RRT in Sec. III. We present
experiments in Sec. IV and discuss their results in Sec. V.
Probabilistic completeness of Theta*-RRT is proven in
Sec. VI.

II. Related Work

Prior research has combined discrete search with con-
tinuous sampling-based motion planning. For example,
Plaku et al. [4, 5] propose a planner where a search-
based planner finds a sequence of decomposition regions

S S

Fig. 2. Comparison of Theta* and A*. Left: The any-angle path
of Theta* (in red) is not constrained to grid edges. Right: The
grid path of A* (in red) is constrained to grid edges and part of a
different homotopy class. It is longer and has more heading changes.

that are then used to guide how RRT grows the tree.
Bekris and Kavraki propose the Informed Subdivision
Tree technique [6] that uses a heuristic to direct the
tree growth and improve the coverage of the state space.
In contrast to these two planners, Theta*-RRT biases
the tree growth mainly in the homotopy class found
by Theta* and considers a continuous control space
(by utilizing steer functions instead of a discrete set
of randomly generated control propagations) to exploit
as much knowledge of the nonholonomic constraints as
possible. Brunnen et al. [7] propose a two-phase motion
planner where A* finds a geometrically feasible path,
which then biases the tree growth of RRT*. This planner
is applied only to a high-dimensional holonomic robot,
where the RRT* vertices (sampled from a Gaussian
distribution centered around the A* path) are connected
using motion interpolation. In contrast, Theta*-RRT
focuses on more complex nonholonomic systems and uses
steer functions. Cowlagi and Tsiotras [9] propose a plan-
ner that constructs a discrete control set using expensive
model-predictive control techniques. In contrast, Theta*
adopts a continuous control space. Rickert et al. [10]
propose the EET planner for holonomic systems that
sacrifices probabilistic completeness by using workspace
information to continuously adjust the sampling behavior
of the planner. In contrast, Theta*-RRT is probabilisti-
cally complete.

III. Combining Any-Angle Search with RRT

Let X ⊂ Rd be the state space, U ⊂ Rm the control
space, and Xobs ⊂ X and Xfree = X \ Xobs the obstacle
and free spaces, respectively. A (control) system Σ on
state space X is a differential system such that

ẋ(t) = f(x(t))u+ g(x(t)) x(0) = xinit, (1)

where xinit ∈ X and, for all t, x(t) ∈ X and u(t) ∈
U . g describes the drift, and f describes the system
dynamics. Theta*-RRT is a feasible motion planner for
small-time controllable nonholonomic systems: It finds
controls u(t) ∈ U for t ∈ [0, T] such that the unique
trajectory x(t) that satisfies Equation (1) connects a
given start state xinit ∈ Xfree to a given goal state
x(T) = xgoal ∈ Xgoal ⊂ Xfree in the free space Xfree.

A. Geodesic Distance for Nonholonomic Wheeled Robots

Let us consider small-time controllable nonholonomic
systems.

Definition 1: System Σ is locally controllable from X
if the set of states reachable from X by an admissible
trajectory contains a neighborhood of X . It is small-time
controllable from X if, for any time T , the set of states
reachable from X before time T contains a neighborhood
of X .
For small-time controllable nonholonomic wheeled
robots, we define the geodesic distance DP(x1,x2) of two
states x1 and x2 to a path P through R2×S1. Consider a
path P and let x′1 and x′2 be the orthogonal projections
of x1 and x2 onto P and their Euclidean distances be
d1 = ‖x1−x′1‖ and d2 = ‖x2−x′2‖ (respectively). Then,
the geodesic distanceDP(x1,x2) is the sum of the lengths
of the geodesics from each of the two states to path P,
that is,

DP(x1,x2) = we (d1 + d2) + wθ
(
1− |qx1

· qx′1 |
)

+wθ
(
1− |qx2

· qx′2 |
)

(for parameters we and wθ), where qx1
and qx2

are the
quaternions of states x1 and x2, and qx′1 and qx′2 the
quaternions of the segments of path P to which x′1 and x′2
belong. The geodesic distance of two states is the smaller,
the closer they are to path P in Euclidean distance,
heading orientations and steering orientations.

B. Our Technique: Theta*-RRT

Theta*-RRT (detailed in Algorithm 1) first generates
a geometrically feasible any-angle path P using only
geometric information about the workspace. Then, it
computes the trajectory by growing a tree τ of smooth

Algorithm 1 Theta*-RRT

function Theta*-RRT(xinit , xgoal)
P ⇐ AnyAngleSearch(xinit , xgoal)
if P = ∅ then

return failure
end if
τ.AddNode(xinit)
g(xinit) ⇐ 0
k ⇐ 1
while k ≤ MAX_ITERATIONS do

xrand ⇐ AnyAngleSampling(X ,P)
xnear ⇐ NearestNeighborSearch(τ,xrand,P)
unew, σnew ⇐ Steer(xnear,xrand)
if σnew ∈ Xobs then
continue

end if
τ.AddNode(xrand)
τ.AddEdge(xnear,xrand,unew)
g(xrand) ⇐ g(xnear) + C(xnear,xrand)
if xrand ∈ Xgoal then

return ExtractTrajectory(xrand)
end if
k ⇐ k + 1

end while
return failure

obstacle

pi

W

pi+2

pi+1

x x′

Fig. 3. Path-biased sampling strategy. Left: Example strip (in
grey) around an any-angle path (in orange), in which samples are
randomly generated. Black arrows are samples, and green arrows
are their projections onto the any-angle path. Blue sectors are the
angular ranges from which the sample orientations are drawn. The
mean sector orientations are computed as weighted averages of the
orientations of the any-angle path segments. The individual weight
contributions are evaluated in geodesic path coordinates along the
offset black line. Right: Resulting mean orientations around an
example any-angle path.

local geodesics around path P (path-biasing heuristic)
satisfying the system’s nonholonomic constraints. It re-
peatedly samples a state xrand mainly from a subspace
Xlocal ⊂ Xfree centered around path P. It then makes
xrand a new tree vertex and connects it to xnear, which
is selected among several ones as the vertex that connects
with minimum cost to xrand. The cost depends on the
length and smoothness of the trajectory from the candi-
date tree vertex to state xrand and the geodesic distance
of both vertices to the any-angle path. The subroutines
of Algorithm 1 are described below:

AnyAngleSearch(xinit , xgoal) uses Theta* to search
an eight-neighbor grid from start grid vertex sinit to
goal grid vertex sgoal, where S is the set of all grid
vertices. sinit ∈ S is the grid vertex that corresponds
to the start vertex xinit, and sgoal ∈ S is the grid
vertex that corresponds to the goal vertex xgoal. We
assume obstacles cells to be inflated so as to reflect
the robot shape. Theta* uses the consistent straight-
line distances as heuristics. It returns an any-angle path
P = {p1,p2, ...,pN} (a discrete Cartesian path) if one
exists and the empty path otherwise.

AnyAngleSampling(X ,P) samples mainly from a con-
nected subspace Xlocal ⊂ X according to a distribution
that conveys geometric information of path P and re-
turns the sampled state xrand. Concretely, the Cartesian
components of the samples are generated uniformly from
a strip with width W (for parameter W , called position
bias) centered around path P. To convert the any-angle
path into a smooth trajectory, the heading orientation
xθ and steering orientation xδ of the samples are gener-
ated uniformly from angular intervals centered around a
mean orientation ᾱ, which is a linear combination of the

orientations of the segments of path P, that is,

ᾱ =
N∑

i=1

wi α
i
p, (2)

where αip is the orientation of segment pipi+1. The
weights wi are calculated from trapezoidal member-
ship functions that are associated with each segment.
The functions are centered around the centers of their
segments with tails that overlap into the neighboring
segments such that their values at the path vertices
pi are exactly 0.5 and their slopes are no less than
a minimal slope δS (for parameter δS). The influence
of each membership function on a given sample x is
computed along geodesic path coordinates, obtained by
offsetting path P with the perpendicular distance of
x to P (see Fig. 3, left). The orientations xθ and xδ
of the samples are then generated uniformly from the
interval (ᾱ − ∆θ, ᾱ + ∆θ) (for parameter ∆θ, called
orientation bias). The components of the samples that
are not related to the workspace (such as velocities and
accelerations) are generated uniformly. Moreover with a
frequency funiform, this function generates uniformly a
sample from the entire Xfree (for parameter funiform).
NearestNeighborSearch(τ , xrand, P) returns the

tree vertex xnear that connects with minimum cost
C(xnear,xrand) to state xrand. Instead of determining
tree vertex xnear directly, Theta*-RRT determines a set
of tree vertices Xnear within distance δR from xrand (for
parameter δR). If this set is empty, it returns the tree
vertex nearest to xrand. Otherwise, it returns the tree
vertex from set Xnear that connects with minimum cost
C(xnear,xrand) to state xrand, that is,

xnear = arg min
x∈Xnear

C(x,xrand) (3)

with

C(x,xrand) = g(x) + Cσ +DP(x,xrand), (4)

where g(x) is the sum of the costs from the tree root
xinit to the tree vertex x and DP(x,xrand) the geodesic
distance of states x and xrand from path P. The cost Cσ
measures the length and smoothness of the trajectory σ
from tree vertex x to state xrand returned by the steer
function. It is defined as

Cσ =

Ne−1∑

i=0

wd||σi+1 − σi||+ wq (1− |qi+1 · qi|)2

(for parameters wd and wq), where Ne+ 1 is the number
of intermediate states σi on trajectory σ and qi are the
associated quaternions. The cost Cσ can be computed
on-line or very efficiently with a regression approach [11].
Steer(xnear, xrand) returns controls unew and a tra-

jectory σnew from state xnear to state xrand with termi-
nal time T . The analytical steer function connects any
pair of states and respects the topological property [12],
that is, for any ε > 0 there exists some η > 0 such
that, for any two states xnear ∈ X and xrand ∈ X with

Fig. 4. Differential drive system in polar coordinates: ρ is the
Euclidean distance between the Cartesian coordinates of the robot
pose (x, y, θ) and of the goal state, φ the angle between the x-axis
of the robot reference frame {Xr} and the x-axis of the goal state
frame {Xg}, α the angle between the y-axis of the robot reference
frame and the vector connecting the robot with the goal position,
v the translational and ω the angular robot velocity.

||xnear−xrand|| < η, it holds that ||xnear−σnew(t)|| < ε
for all t ∈ [0, T]. If σnew is collision-free, it is added to τ
as the tree branch (or edge) that connects xnear to xrand.

IV. Experimental Setup

We now investigate how well Theta*-RRT performs
against the baseline planners RRT, A*-RRT, RRT* and
A*-RRT*. All planners extend their trees using steer
functions. RRT and RRT* sample in the entire state
space. RRT uses Cσ as distance metric, and RRT* uses
Cσ as cost function. A*-RRT and A*-RRT* sample along
A* paths. A*-RRT generates samples and selects the tree
vertex that connects to the sampled state with minimum
cost in the same way as Theta*-RRT. A*-RRT* gener-
ates the samples from a Gaussian distribution centered
around the A* path as in [7] and uses Cσ as cost function.

All experiments are carried out with a C++ imple-
mentation on a single core of an ordinary PC with a 2.67
GHz Intel i7 processor and 10 GB RAM. The weights
of the cost function and the parameters of the distance
metric are wd = we = wq = wθ = 0.5 and δS = δR = 4m.
funiform is set to 1 over 5000 samples.

A. Nonholonomic Systems

We consider two small-time controllable nonholonomic
systems, namely a 3-dimensional differential drive system
and an 8-dimensional truck-and-trailer system.

Differential drive system: We use a unicycle system
with state (x, y, θ), where (x, y) ∈ R2 is the Cartesian
position and θ ∈ [−π, π) is the heading orientation.
After a Cartesian-to-polar coordinate transformation, see
Fig.4, the equations of motions are

ρ̇ = − cosα v

α̇ =
sinα

ρ
v − ω

φ̇ = −ω,

(5)

where v and ω are the translational and the angular ve-
locities, respectively. For this system, we use the efficient
and smooth steer function POSQ [13]. Width and length
of the robot are set to 0.4m and 0.6m, respectively.

Truck-and-trailer system: In order to obtain
high-quality trajectories, we use the extended state

Fig. 5. Truck-and-trailer system: (x, y) ∈ R2 are the coordinates of
the trailer axle’s midpoint, θ0 and θ1 the orientations of the trailer
and truck, v the translational velocity of the truck, δ its steering
angle, d1 the distance between the front axle and the rear axle of
the truck, and d0 the distance between the trailer axle and the hitch
joint on the rear truck axle.

(x, y, θ0, θ1, v, v̇, δ, δ̇), where (x, y) ∈ R2 are the coor-
dinates of the trailer axle’s midpoint, θ0 and θ1 the
orientations of the trailer and truck, respectively, v the
translational velocity of the truck, v̇ its acceleration, δ
the steering angle of the truck and δ̇ its derivative, see
Fig. 5. The equations of motions are

ẋ = v cos(θ1 − θ0) cos θ0

ẏ = v cos(θ1 − θ0) sin θ0

θ̇0 =
v

d0
sin(θ1 − θ0)

θ̇1 =
v

d1
tan(δ).

(6)

For this system, we use the η4 splines [14] as steer
function since they are known to generate high-quality
trajectories for truck-and-trailer systems. We set d0 =
d1 = 1, width and length of the trailer to 0.4m and 0.6m
and the truck width to 0.4m.

B. Environments

To stress-test the planners and study how they behave
in environments of varying complexity, we design three
simulated test environments shown in Figs. 1 and 6.
The maze environment in Fig. 1 contains many different
homotopy classes, has local minima (such as U-shaped
obstacles) and narrow passages. Its size is 50m×50m.
The random environment contains randomly generated
square obstacles, its size is 50m×30m. The narrow cor-
ridor environment in Fig. 6 stresses the ability of the
planners to generate smooth trajectories in narrow cor-
ridors, its size is 25m×25m. The grid cell size for the
any-angle search is 1 m in all environments.

C. Performance Metrics

For each planner and environment, we perform
100 runs for the differential drive system and 50
runs for the truck-and-trailer system. We are solely
interested in the first trajectories found. We compute
the means and standard deviations of the following four
performance metrics for all planning problems that are
solved within the planning time limit of 1,000 seconds:
tree size Nv (measured in the number of stored tree
vertices), planning time Ts (measured in milliseconds or
seconds) and resulting trajectory length lp (measured

Fig. 6. Narrow corridor environment with the goal position (in
red) and the trees (in blue). Left: Tree of Theta*-RRT. Right:
Tree of RRT. Theta*-RRT generates a smaller tree than RRT,
which makes Theta*-RRT faster.

pi/10 pi/2 2pi
0

1

2

3

4

5

6

7

∆θ

T
s
 [

s
]

Planning time

∆θ

pi/10 pi/2 2pi

 R

-0.1

-0.05

0

0.05

0.1

0.15

Roughness

pi/10 pi/2 2pi
0

500

1000

1500

2000

2500

3000

3500

4000

4500

∆θ

 N
v

Tree size

pi/10 pi/2 2pi
85

90

95

100

105

110

115

120

∆θ

l p
 [

m
]

Trajectory length

Fig. 7. Performance trends for different strengths of the position
bias W (W = 1m in red, W = 4m in blue and W = 10m in
green) and orientation bias ∆θ in the maze environment for the
metrics planning time, roughness, tree size and trajectory length
(smaller values are better for all performance metrics).

in meters). Smoothness, although an intuitive concept,
is less straightforward to assess. In our previous work
[11, 13], we used performance metrics based on the
velocity profile of the robot (such as the average
speed arc lengths, velocity profile peaks or normalized
jerk). Here, we use a metric that is better suited for
measuring geometric trajectory smoothness and thus
human-perceived smoothness (namely how sharp the
turns are): roughness R, defined as the square of the
change in curvature κ of the robot, integrated along
the trajectory and normalized by the trajectory length L,

R =

∫ tl

t0

∣∣∣∣
1

L

dκ

dt

∣∣∣∣
2

dt.

A smaller roughness indicates smoother trajectories. We
also compute the percentage of trajectories found (prob-
lems solved) within the planning time limit.

D. Theta*-RRT Parameters

Prior to the main experiment, we analyze the impact of
the parameters W and ∆θ on the performance of Theta*-

RRT. Position bias W is related to the geometry of the
wheeled robot and should be set to a value no less than
the maximum value of its length and width. We use the
maze environment and the ranges W = {1m, 4m, 10m}
and ∆θ =

{
π
10 ,

π
2 , 2π

}
. For each pair of parameter values,

we compute the mean and standard deviation of the four
performance metrics over multiple runs. Fig. 7 shows the
results for the differential drive system. The results for
the truck-and-trailer system are qualitatively similar. We
observe three trends: (i) With a larger orientation and
position bias (that is, smaller ∆θ and W), the trajectories
tend to be shorter and smoother, which is expected since
the trajectories then follow the any-angle paths more
closely. (ii) With a smaller orientation bias (that is, larger
∆θ), the tree sizes and planning times tend to be smaller.
The optimum is at the medium value W = 4m where the
value of ∆θ has almost no influence (but the optimum is
at the smallest value ∆θ = π

10). Given these trends, we
select the medium position bias W = 4m and the strong
orientation bias ∆θ = π

10 .

V. Experimental Results

The experimental results for Theta*-RRT and the four
baseline planners are given in Tables I-II. Smaller values
are better for all performance metrics. The best values
are highlighted in boldface. Theta*-RRT outperforms the
four baselines with respect to all performance metrics,
with only two exceptions. It is a close second with respect
to trajectory smoothness to RRT* for the differential
drive system in the random environment and to A*-RRT
for the truck-and-trailer system in the narrow corridor
environment. We make the following observations:

(i) The path-biasing heuristic of Theta*-RRT avoids
the time-consuming exploration of the entire state space
and thus results in small tree sizes and planning times.
This advantage comes at the cost of having to find an
any-angle path first but Tab. III shows that the runtime
of the discrete search is negligible compared to the overall
planning time. Theta*-RRT thus has an advantage over
RRT and RRT* that explore large parts of the state
space, especially in environments with local minima and
narrow passages. For this reason, RRT* (and even A*-
RRT*) fail to find any trajectory within 1,000 seconds
for the high-dimensional truck-and-trailer system in all
runs in two of the three environments.

(ii) The path-biasing heuristic of Theta*-RRT results
in trajectories that fall into good homotopy classes and
are thus short. Theta*-RRT thus has an advantage over
A*-RRT and A*-RRT*, whose path-biasing heuristics
suffer from the A* paths typically being in worse ho-
motopy classes than the Theta* paths, which results in
longer trajectories and thus also larger planning times
and tree sizes.

(iii) The sampling strategy of Theta*-RRT results in
smooth trajectories. Theta*-RRT thus has an advantage
over A*-RRT*, whose sampling strategy is not quite as
sophisticated.

Random environment
Planner Tree size Nv Planning time Ts [s] Trajectory length lp [m] Roughness R Problems solved
Theta*-RRT 54 ± 59 0.011 ± 0.007 43.11 ± 1.485 0.001 ± 0.003 100%
A*-RRT 49 ± 46 0.020 ± 0.01 44.16 ± 1.76 0.003 ± 0.004 100%
RRT 137 ± 150 0.09 ± 0.05 65.25 ± 13.54 0.009 ± 0.008 100%
RRT* 168 ± 154 9.57 ± 13.73 43.84 ± 1.45 0.00074 ± 0.00140 100%
A*-RRT* [7] 32 ± 34 0.40 ± 0.93 52.88 ± 19.0 0.0057 ± 0.0098 100%

Maze environment
Planner Tree size Nv Planning time Ts [s] Trajectory length lp [m] Roughness R Problems solved
Theta*-RRT 319 ± 164 0.19 ± 0.07 94.86 ± 2.74 0.0038 ± 0.0038 100%
A*-RRT 1470 ± 777 3.73 ± 4.8 98.45 ± 1.12 0.015 ± 0.007 100%
RRT 2615 ± 960 4.85 ± 4.62 139.16 ± 21.63 0.018 ± 0.01 100%
RRT* 658 ± 37 16.13 ± 0.34 129.61 ± 5.65 0.024 ± 0.01 100%
A*-RRT* [7] 356 ± 193 47.66 ± 48.47 96.57 ± 5.37 0.013 ± 0.009 100%

Narrow corridor environment
Planner Tree size Nv Planning time Ts [s] Trajectory length lp [m] Roughness R Problems solved
Theta*-RRT 1206 ± 258 8.16 ± 3.63 77.78 ± 1.44 0.0027 ± 0.004 100%
A*-RRT 1799 ± 715 18.84 ± 15.2 77.8 ± 1.33 0.023 ± 0.01 100%
RRT 8488 ± 1639 180.45 ± 58.55 78.36 ± 1.82 0.0069 ± 0.005 100%
RRT* 45310 ± 7012 2667.5 ± 481.7 79.47 ± 0.9 0.03 ± 0.008 100%
A*-RRT* [7] 3236 ± 572 309.4 ± 119.4 78.37 ± 0.65 0.0125 ± 0.006 100%

TABLE I

Experimental results: Trajectory quality and planning efficiency for the differential drive system.

Random environment
Planner Tree size Nv Planning time Ts [s] Trajectory length lp [m] Roughness R Problems solved
Theta*-RRT 52.2 ± 48.3 0.0547 ± 0.0790 44.331 ± 2.8418 0.0057 ± 0.0060 100%
A*-RRT 75.7 ± 52.4 0.1019 ± 0.0984 51.74 ± 7.89 3.4993 ± 8.8502 58%
RRT 836 ± 378 1.32 ± 0.84 66.96 ± 14.7 2.17 ± 2.00 100%
RRT* 3957 ± 2756 816.16 ± 656.58 52.39 ± 13.12 0.54 ± 1.01 76%
A*-RRT* [7] 3582 ± 3138 949.6 ± 823.7 49.30 ± 12.79 0.1013 ± 0.2647 100%

Maze environment
Planner Tree size Nv Planning time Ts [s] Trajectory length lp [m] Roughness R Problems solved
Theta*-RRT 522 ± 167 2.57 ± 1.50 98.59 ± 4.95 1.0073 ± 0.7226 100%
A*-RRT 661 ± 181 4.56 ± 2.0858 101.79 ± 8.26 1.1317 ± 1.0372 100%
RRT 4858 ± 1276 38.88 ± 15.83 126.34 ± 16.52 2.0788 ± 1.2985 100%
RRT* 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0%− failed
A*-RRT* [7] 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0%− failed

Narrow corridor environment
Planner Tree size Nv Planning time Ts [s] Trajectory length lp [m] Roughness R Problems solved
Theta*-RRT 1513 ± 492 20.87 ± 13.77 77.10 ± 6.75 2.15 ± 1.12 100%
A*-RRT 2139 ± 573 33.46 ± 16.74 79.66 ± 5.94 1.9352 ± 0.8722 100%
RRT 1794 ± 5473 733.98 ± 438.28 83.77 ± 7.04 2.31 ± 1.47 100%
RRT* 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0%− failed
A*-RRT* [7] 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0%− failed

TABLE II

Experimental results: Trajectory quality and planning efficiency for the truck-and-trailer system.

Additionally, we tested Theta*-RRT in a real-world
setting by deploying it on a passenger guidance robot for
complex and busy airport environments (Fig. 8).

VI. Probabilistic Completeness of Theta*-RRT

The results clearly demonstrate the benefit of Theta*-
RRT. However, its path-biasing heuristic – as any heuris-
tic – can mislead and even degrade the performance of
RRT, for example when the any-angle path is infeasible

Environments TTheta∗ [ms] TA∗ [ms]
Random 5.34 8.07
Maze 12.06 19.91
Narrow corridor 45.14 37.74

TABLE III

Experimental results: Planning times of Theta* and A*

to follow under kinodynamic constraints, although a
geometric solution (in the inflated grid world) exists. In
such cases, the probabilistic completeness, a key property
of RRT, is lost. In this section, we prove that Theta*-
RRT retains the probabilistic completeness for all small-
time controllable nonholonomic systems which use an an-
alytical steer function. Probabilistic completeness is well
established for systems with geometric constraints [15]
and kinodynamic systems under some strong assump-
tions (that is, forward simulations [2], uniform sampling
and optimal steering [16, 17] and holonomic systems with
state-space based interpolation [18]). Our proof follows
the one introduced in [2] but we consider a special class
of nonholonomic systems, namely systems that are small-
time controllable, see Definition 1.

Fig. 8. Theta*-RRT on a real differential drive robot. Right:
The robot guides a group of people. Left: The dots S and G (in
red) represent the start and goal positions (respectively). The any-
angle path (in green) is generated first, followed by the smooth
trajectory (in purple).

Theorem 1: Consider a small-time controllable non-
holonomic system. Define a non-zero and non-uniform
continuous sampling distribution fs over Xfree gener-
ated by the path-biasing technique. Let Theta*-RRT
use an analytical steer function that connects any pair
of states in X . Then, Theta*-RRT is probabilistically
complete since the probability of connecting the start
state xinit ∈ Xfree to the goal state xgoal ∈ Xfree, if
possible, approaches one asymptotically.

Proof: Let B(xi, ρ) denote the ball of radius ρ > 0
centered on xi ∈ Xfree. Consider all the tree vertices
∪i=0,..,k xi ∈ τ at iteration k. Since the volume Ω =
∪i=0,..,k B(xi, ρ ≥ δR > 0) is non-zero for the Lebesgue
metric the event of sampling a state xrand ∈ Ω will hap-
pen with probability one as the number of iterations goes
to infinity. Given that the system is small-time control-
lable, the connection (performed by the steer function) of
xrand to xnear (chosen among multiple vertices in τ), will
be successful and therefore (if collision free) xrand will be
added to τ . The set X̃k = {x ∈ Xfree\∀x ∈ τ} represents
the uncovered part of the space Xfree by τ . By induction
following the above property, as k approaches infinity,
µ(X̃k) (the volume of X̃k) approaches zero, therefore the
state xgoal will be added to τ with probability one.
Theorem 1 extends to RRT with any path-biasing heuris-
tic as long as it uses analytical steer functions for systems
that are small-time controllable since the proof does not
exploit any geometric properties of Xlocal.

VII. Conclusions

In this paper, we introduced Theta*-RRT, a hierarchi-
cal technique that combines (discrete) any-angle search
with (continuous) RRT motion planning for small-time
controllable nonholonomic wheeled robots. We evaluated
the approach using two different non-holonomic systems
in three different environments and compared it to four
different baseline planners, namely RRT, A*-RRT, RRT*
and A*-RRT*. The results show that Theta*-RRT finds
shorter trajectories significantly faster than the baselines
without loss of smoothness, while A*-RRT* and RRT*
(and thus also Informed RRT* [8]) fail to generate a first
trajectory sufficiently fast in environments with complex
nonholonomic constraints. We also proved that Theta*-
RRT retains the probabilistic completeness of RRT for

all small-time controllable systems that use an analytical
steer function.

Acknowledgments
The authors thank Aurelio Piazzi for providing access to the η4

splines closed-form expressions. This work has been supported by
the EC under contract number FP7-ICT-600877 (SPENCER). Sven
Koenig’s participation was supported by NSF under grant numbers
1409987 and 1319966 and a MURI under grant number N00014-09-
1-1031. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the sponsoring
organizations, agencies or the U.S. government.

References
[1] K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta*: Any-

angle path planning on grids,” Artificial Intelligence Research,
Journal of, vol. 39, no. 1, 2010.

[2] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic
planning,” Int. Journal of Robotics Research, vol. 20, 2001.

[3] S. Karaman and E. Frazzoli, “Incremental sampling-based
algorithms for optimal motion planning,” in Robotics: Science
and Systems (RSS), Zaragoza, Spain, 2010.

[4] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Discrete search
leading continuous exploration for kinodynamic motion plan-
ning,” in Robotics: Science and Systems (RSS), Philadelphia,
USA, 2007.

[5] E. Plaku, E. Kavraki, and M. Y. Vardi, “Motion planning with
dynamics by a synergistic combination of layers of planning,”
Robotics, IEEE Transactions on, vol. 26, no. 3, 2010.

[6] K. Bekris and L. Kavraki, “Informed and probabilisti-
cally complete search for motion planning under differential
constraints,” in First International Symposium on Search
Techniques in Artificial Intelligence and Robotics (STAIR),
Chicago, IL, 2008.

[7] M. Brunner, B. Bruggemann, and D. Schulz, “Hierarchical
rough terrain motion planning using an optimal sampling-
based method,” in Int. Conf. on Robotics and Automation
(ICRA), Karlsruhe, Germany, 2013.

[8] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “In-
formed RRT*: Optimal sampling-based path planning focused
via direct sampling of an admissible ellipsoidal heuristic,” in
Int. Conf. on Intelligent Robots and Systems (IROS), Chicago,
USA, 2014.

[9] R. V. Cowlagi and P. Tsiotras, “Hierarchical motion planning
with dynamical feasibility guarantees for mobile robotic vehi-
cles,” Robotics, IEEE Transactions on, vol. 28, no. 2, 2012.

[10] M. Rickert, A. Sieverling, and O. Brock, “Balancing explo-
ration and exploitation in sampling-based motion planning,”
Robotics, IEEE Transactions on, vol. 30, no. 6, 2014.

[11] L. Palmieri and K. O. Arras, “Distance metric learning for
RRT-based motion planning with constant-time inference,” in
Int. Conf. on Robotics and Automation (ICRA), Seattle, USA,
2015.

[12] J.-P. Laumond, S. Sekhavat, and F. Lamiraux, Guidelines in
nonholonomic motion planning for mobile robots. Springer,
1998.

[13] L. Palmieri and K. O. Arras, “A novel RRT extend function
for efficient and smooth mobile robot motion planning,” in
Int. Conf. on Intelligent Robots and Systems (IROS), Chicago,
USA, 2014.

[14] F. Ghilardelli, G. Lini, and A. Piazzi, “Path generation using
η4-splines for a truck and trailer vehicle,” Automation Science
and Engineering, IEEE Transactions on, vol. 11, no. 1, 2014.

[15] A. M. Ladd and L. E. Kavraki, “Measure theoretic analysis of
probabilistic path planning,” Robotics and Automation, IEEE
Transactions on, vol. 20, no. 2, 2004.

[16] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Random-
ized kinodynamic motion planning with moving obstacles,”
Int. Journal of Robotics Research, vol. 21, 2002.

[17] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion
planning for agile autonomous vehicles,” in American Control
Conference, vol. 1, 2001.

[18] S. Caron, Q.-C. Pham, and Y. Nakamura, “Completeness of
randomized kinodynamic planners with state-based steering,”
in Int. Conf. on Robotics and Automation (ICRA), Hong
Kong, China, 2014.

A Fast Randomized Method to Find Homotopy Classes
for Socially-Aware Navigation

Luigi Palmieri Andrey Rudenko Kai O. Arras .

Abstract— We introduce and show preliminary results of
a fast randomized method that finds a set of K paths lying
in distinct homotopy classes. We frame the path planning
task as a graph search problem, where the navigation graph
is based on a Voronoi diagram. The search is biased by
a cost function derived from the social force model that
is used to generate and select the paths. We compare
our method to Yen’s algorithm, and empirically show
that our approach is faster to find a subset of homotopy
classes. Furthermore our approach computes a set of more
diverse paths with respect to the baseline while obtaining
a negligible loss in path quality.

I. INTRODUCTION

In socially-aware navigation, like in the case where
a robot assists, informs and guides passengers in large
and busy airports [1], the motion planner deals with
non-static scenarios where crowds of pedestrians and
dynamic obstacles regularly invalidate paths generated
by using standard approaches (e.g. A* [2], RRT [3],
PRM [4]). Each time a path is invalidated, a new
motion planning problem has to be solved or in the
case of replanning algorithm like D* [5] a repairing
phase should recompute a new path by first updating
costs over a grid map. Having a set of K precomputed
distinct paths, that may be checked for validity in
case of the appearance of unexpected obstacles, is a
more reasonable approach than solving from scratch
the motion planning problem or to replan for each envi-
ronment’s change. Moreover a more rational approach
would be to generate K distinct paths from K different
homotopy classes. A homotopy class is defined by the
set of paths with the same start and goal points which
can be continuously deformed into one another without
intersecting obstacles.

Different approaches have been already introduced
to generate a set of paths belonging to different homo-
topy classes. Demeyen and Buro [6] introduce a method
for efficient path planning that searches on a graph
built using constrained Delaunay triangulations. The
obstacles are described via polygonal representation.
The paths, found in the graph, represent different
homotopy classes. Eriksson et al [7] find K homotopy
classes solving the K shortest paths problem in a two-
dimensional environment with polygonal obstacles.
They introduce the Kth shortest path map: a map of

L. Palmieri, A. Rudenko, K.O. Arras are with the Social Robotics
Lab, Dept. of Computer Science, University of Freiburg, Germany.
{palmieri,arras}@cs.uni-freiburg.de, andrey.rudenko@saturn.uni-
freiburg.de

G

Fig. 1. An example path selected from the K best homotopy classes
in the Voronoi diagram. The robot is enclosed in the black circle,
in red the path selected to reach the goal position G. The black
Voronoi diagram describes the possible ways to go through a crowd
by implicitly encoding different homotopy classes.

the entire free workspace, partitioned into equivalence
class regions such that the kth shortest path from a
start vertex s to any point in a single region has
the same structure. Moreover they introduce a simple
visibility-based algorithm, based on Yen’s algorithm
[8], for computing the K shortest paths between two
fixed points. Bhattacharya et al. [9] propose a method
to find different homotopy classes based on A* search
over an augmented graph. The graph represents the
topological information via the H-signature, a complex
analysis value that characterizes a homotopy class, the
graph may contain multiple paths to the goal within the
same homotopy class. Kuderer et al in [10] select K best
homotopy classes by generating K shortest paths using
Katoh’s algorithm [11]. During navigation the paths
feed an optimization algorithm used to generate ho-
motopically distinct kinodynamic trajectories. Among
those the best one is selected for the navigation. They
show the method is one order of magnitude faster than
[9]. Vela et al [12] detail a decision support tool to
aid air traffic controllers and managers in re-routing
traffic: they generate a set of homotopy classes for a
given pair of start and goal poses, by computing the K
shortest paths via the Dijkstra algorithm on a Voronoi
graph. The latter is generated from a map that encodes

weather conditions. A final step optimize the set of K-
shortest paths with respect to path length and weather
avoidance. Voss et al [13] introduce an algorithm that
seeks to find a set of diverse, short paths through a
roadmap graph. The algorithm finds diverse homotopy
classes by finding diverse shortest paths avoiding a
collection of balls imposed on the graph as simulated
obstacles. The authors compare their approach to the
Eppstein algorithm [14] that finds the optimal set of K
shortest paths with loops and show that, with tolerable
loss in shortness, they produce equally diverse path
sets orders of magnitude more quickly. Hernandez et al
[15] propose and compare three different path planning
algorithms that exploit the set of homotopy classes
generated for any 2D workspace: Homotopic A*, Ho-
motopic RRT and Homotopic Bug. Their method to
generate homotopy classes modifies the one introduced
by Jenkins [16]: it first builds a reference frame in the
workspace which is used to identify the homotopy
classes and afterwards it builds a topological graph
which allows an easy and systematic computation of
homotopy classes. The homotopy classes are sorted
according to a lower bound heuristic estimator, then
they are used to guide and to constrain topologically
the path search.

Instead of solving the K shortest paths problem with
deterministic graph search algorithms like in [9, 10, 12],
we introduce and show preliminary results of a fast
randomized method based on random walks that finds
a set of K homotopically distinct paths, according to
a social cost. As in [10] we build a navigation graph
from the Voronoi diagram. Each path found in the
Voronoi diagram represents a distinct homotopy class.
Differently from [13, 10] we compare our method to
Yen’s algorithm, a fast algorithm that finds loopless
paths. In [13] the authors compare their approach to
Eppstein’s algorithm which finds paths with loops
therefore having a lower chance to find a more diverse
set of paths. In [10] the authors use Katoh’s algorithm,
however, it was shown by Brander and Sinclair [17]
that for small size graphs and paths of small number
of vertices, like in the case we consider, Yen’s is faster
than Katoh’s. Furthermore in our approach, instead of
using a polygonal representation of the obstacles as
in [6, 7], we use occupancy grids where obstacles are
represented by blocked cells, therefore permitting an
easier integration with existing mapping frameworks.
We assume in our work that the pedestrians’ poses are
given by a people (or group) tracker [18, 19].

The contribution of our paper is as follows:
• we introduce a fast, and easy to implement, ran-

domized approach to find a set of K paths belong-
ing to K different homotopy classes.

• we perform an extensive evaluation and compare
our method to Yen’s algorithm. Our approach is
faster than Yen’s to find a subset of homotopy
classes in a Voronoi diagram;

• moreover our approach generates more diverse
paths than Yen’s (the robot has a more diverse set
from where to choose the path to follow), while
obtaining a negligible loss in path quality.

The paper is structured as follows: we detail our new
approach and its analysis in Section II. We present the
experiments in Section III and discuss the results in
Section IV. Section V concludes the paper.

II. OUR APPROACH

We introduce a probabilistic approach to find paths
belonging to different homotopy classes for socially-
aware robot motion planning. Our approach is com-
plete, it can find all the possible paths, namely all the
homotopy classes implicitly encoded in the navigation
graph built from a Voronoi diagram that describes the
scenario. Having a set of possible paths, we choose
the best one according to a cost that considers social
interactions between humans.

A. Navigation Graph

Our method could be used with discrete information
received from a people tracker, however, it is equally
well suited for use on general occupancy grids. In
our case the input scenario is given as a collection of
discrete people poses, (x, y, θ), in the 2D workspace,
see Fig.2 (left). To frame the motion planning task as a
graph search problem, we build the navigation graph
G of the scenario from the Voronoi diagram VD, gen-
erated considering as obstacles also the people poses,
see Fig.2 (middle). We create two additional vertices for
the initial robot position and goal position, and connect
them to the closest point of the Voronoi diagram, see
Fig.2 (right). In the navigation graph, built in this way,
different paths from the initial robot position to the goal
position belong to different homotopy classes.

The graph G(V,E) consists of a set of nodes (or
vertices) V and a set of edges E. In this work, N is
the number of nodes in the graph and M the number
of edges. We associate to each edge eij , connecting the
node vj to its neighbor vi, an attribute or cost cij . E(vj)
denotes the set of incoming and outgoing edges of vj .

We compute the set of homotopy classes by running
our random walk based algorithm on G. A walk w
of length k − 1 in a graph is a sequence of nodes
v1, v2, . . . , vk, where each pair of nodes is connected by
an edge, (vi−1, vi) ∈ E for 1 < i ≤ k . The adjacency
matrix A of G expresses the topology of the graph and
is defined as

[A]ij =

{
1 if (vi, vj) ∈ E, i 6= j

0 otherwise

Walks are usually referred to as paths.

Fig. 2. In all the figures the red cross is the robot position, the green circle is the goal. Left: pedestrians’ poses, marked with blue arrows, are
provided by the people tracker, a social force field is generated over the two pedestrians. Middle: a Voronoi diagram is built considering the
pedestrian positions as obstacles. The Voronoi diagram points are displayed in darker grey. Right: navigation graph built from the Voronoi
diagram. The robot and goal nodes are mapped to their closest Voronoi points. The navigation graph vertices are depicted in blue, its edges
in black .

B. Randomized Homotopy Classes Finder

To find different homotopy classes we introduce
the Randomized Homotopy Classes Finder (RHCF),
detailed in Alg.1. We iteratively run the random walk
algorithm, see Alg.2, on the weighted undirected graph
until K distinct paths are found.

Given the weighted graph G, we start at the initial
node vs, the one where the robot position is mapped
to.

At each step of the random walk we choose
a random neighbor of the current node vj (see
RandomNeighbor(vj) in Alg.1) with probability pij in-
versely proportional to the cost cij associated to the
edge eij

pij =

1
cij
Aij∑

k
1

ckj
Akj

(1)

where Aij is an element of the adjacency matrix A.
The transition matrix P of the graph G is defined as

the N ×N matrix where each of its elements is defined
as in Eq.1.

Each time we leave a node, we mark it as visited (by
removing it from the local copy of the graph Gp) and do
not allow the algorithm to walk through it again in the
current run of the random walk. The walk stops when
the goal node is found or when we reach a node with
all neighbors marked as visited. Each time a path P is
generated, we compare it to the ones already found.
If the same path was not generated before and it is a
valid path, we save it in our homotopy classes set H . A
path is valid if its last node is vg . All the visited nodes
are then marked unvisited.

After the K paths have been found, the robot chooses
the best one to follow in terms of the social cost func-
tion. In the case that the followed path is invalidated
by an unexpected obstacle, the planner selects the best

path from the set of available paths, given the current
status of the robot and of the environment.

Algorithm 1 Randomized Homotopy Classes Finder
function RHCF(vs, vg, G,K)
k = 0
while k < K do

P← RandomWalk(vs, vg, G)
if P 6∈ H and isvalid(P) then
H ← H ∪ P
k = k + 1

end if
end while

Algorithm 2 Random Walk
function RandomWalk(vs, vg, G)
vj ← vs
Gp ← G
P← vj
while vj 6= vg do
vi ← RandomNeighbor(vj)
P← P ∪ vi
Gp ← Gp \ E(vj)
vj ← vi

end while
return P

C. Cost definition

Several state of the art approaches focus on finding
the K-shortest paths [9, 10, 12, 13]. Here we are in-
terested in finding the K best homotopy classes for
socially-aware motion planning, therefore we compute
the edges weights cij by using a cost function derived
from the social force model introduced by Helbing [20].

The cost cij is defined by the line integral of the
pedestrians’ interaction forces on the planar curve sij
described by the edge eij and the edge length ls.

cij =

∫

sij

Fs ds+ ls (2)

The force Fs represents the force generated from the
interactions of all the pedestrians pi with the robot,
defined as pedestrian pj ,

Fs =
∑

i∈P
fi,j (3)

with P = {pi}Np

i=1 being the set of Np pedestrians. The
forces fi,j decrease proportional to the distance of their
sources to the robot, and are modelled as

fi,j = aje

(
ri,j−di,j

bj

)

ni,j (4)

where aj specifies the magnitude and bj the range of
the force. The distance di,j is given by the Euclidean
distance between the pedestrian pi and robot, ri,j is
the sum of their radii (we approximate each pedestrian
with a circle). The term ni,j is the normalized vector
pointing from pi to the robot which describes the
direction of the force.

To better describe the limited field of view of the
pedestrian, the forces are scaled with an anisotropic
factor (see Fig.3)

fi,j = aje

(
ri,j−di,j

bj

)

ni,j

(
λ+ (1− λ)1 + cos (ϕi,j)

2

)
(5)

where λ defines the strength of the anisotropic factor
and

cos (ϕi,j) = −ni,j · êi . (6)

with êi representing the direction of the pedestrian pi.
Notice that our approach is not limited to a single

definition of cost, different definitions from the social
navigation literature could be used [10, 21, 22].

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x [m]

y
 [

m
]

Fig. 3. Anisotropic influence model for λ = 0.1, aj = 2, bj = 1,
rij = 0.4 generated by the social force Fs for a single pedestrian.
Red regions denote higher cost regions.

III. EXPERIMENTS

To evaluate our approach in terms of planning per-
formance and quality of the solutions, we design a set
of experiments by choosing proper environments and
metrics. We compare our approach to Yen’s algorithm.
In both algorithms we adopt the cost defined in Sec.II-
C. The algorithms are implemented in C++. All exper-
iments were running on an ordinary PC with 2.3 GHz
Intel Core i5 and 8 GB of RAM.

A. Yen’s Algorithm
In [8] Yen introduces an algorithm to find K-shortest

loopless paths for a given pair of start and goal poses.
The algorithm computational upper bound increases
linearly with the value of K: with modern data struc-
ture it can be implemented in O(KN(M + Nlog(N)))
worst-case time. We use the C++ implementation intro-
duced by Martins and Pascoal in [23], which is reported
to have better performance than the straightforward
implementation. We compare our approach to the Yen’s
algorithm, because it finds a set of k best paths with
an higher diversity than the ones found by Eppstein’s
and it was shown by Brander and Sinclair [17] that for
small size graphs and paths of small length (like the
graphs generated from a Voronoi diagram), it is faster
than Katoh’s.

B. Environments
We design four different environments (shown in Fig

4), to stress different properties of the planner and to
study how the algorithm behaves in environments of
varying complexity. We choose scenarios resembling
potential situations that could occur while a robot is
navigating into an airport. In the wall of people scenario,
the robot needs to find different ways to the goal
through a queue of standing people, this scenario has
33 possible homotopy classes. In the crowd A (670
homotopy classes) and in the crowd B (576 homotopy
classes) scenarios, the people are placed in a sparser
way forming different groups. In the scenario sur-
rounded, that has 1826 possible homotopy classes, the
robot is placed in the crowd, surrounded by several
people.

C. Metrics
To quantify planning performance and difference

in quality with respect to Yen’s search method we
compute the averages of the following metrics: Tk time
to get K different homotopy classes, nCGk normalized
cumulative gain, RDk robust diversity of a set PK of
K paths returned by the algorithms. The robust diversity
measures how large are the intra-set distances between
pairs of paths in the set PK . Let us consider df (pa, pb)
to be the Fréchet distance between two paths pa and pb
evaluated at the vertices, as in [13]. We define RDk as

RDk =
1

|PK |
∑

pa∈P
min

pb∈P,pa 6=pb

df (pa, pb).

Fig. 4. In all the environments, the social force is displayed in grey scale: darker regions have a higher social cost. The peaks of the social
force field represent the agent positions. The scenario at top left is the wall of people environment. The one at top right part of the figure is
the surrounded environment. At the bottom left and at the bottom right are respectively the crowd A and the crowd B scenarios. Red crosses
represent the robot position, the goal is displayed by green circles. In all the figures, the edges of the Voronoi diagram are in dark grey and
example paths generated by our approach are displayed with black edges.

The normalized cumulative gain nCGk is often used
to measure the goodness of the ranking results returned
by a web search engine algorithm. It computes how far
is the candidate ranking set from the ideal ranking set.
It is based on the definition of relevance (rel) of a single
path. In our case the relevance is defined as the inverse
of the path cost.

CGk =

K∑

k

relk

nCGk =
CGk

max(CGk)

To paths with smaller costs correspond higher values of
cumulative gain. nCGk is normalized by the maximum
cumulative gain of k best paths generated by Yen’s.

D. Parameters

In the algorithm only one parameter need to be set:
the number of homotopy classes to find. For Yen and
RHCF algorithms we find the first 5 paths or homotopy
classes (K=5). The parameters of the cost function after
several informal validations have been set to (see Fig.3):

0 5 10 15 20 25 30

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

K

n
C

G
k

Fig. 5. Normalized Cumulative Gain nCGk obtained by varying
K in the crowd A scenario. As K increases, our approach converges
to the optimal value of the normalized cumulative gain nCGk .

0 5 10 15 20 25 30
2.5

3

3.5

4

4.5

5

K

R
D

k

RHCF

Yen

Fig. 6. Robust diversity RDk obtained by varying K in the crowd
A scenario. The paths produced by our approach are more diverse
than the one generated by Yen’s for small values of K.

0 5 10 15 20 25 30
−5

0

5

10

15

20

K

T
k
 [

m
s
]

RHCF

Yen

Fig. 7. Planning time Tk obtained with different values for K in
the crowd A scenario. For small values of K, our approach is faster
than Yen’s algorithm in very complex scenarios (with hundreds of
different homotopy classes).

RDk

Scenarios RHCF Yen
Crowd A 3.76813 2.79823
Crowd B 4.23284 3.4217
Wall of People 3.7924 5.19881
Surrounded 3.76813 2.79823

TABLE I
ROBUST DIVERSITY RESULTS

nCGk

Scenarios RHCF
Crowd A 0.7857
Crowd B 0.7142
Wall of People 0.771
Surrounded 0.7461

TABLE II
CUMULATIVE GAIN RESULTS

magnitude of social force to pedestrians aj to 2, range
of social force to pedestrians bj to 1, strength of the
anisotropic factor λ to 0.1, rij equal to 0.4 m.

IV. RESULTS AND DISCUSSION

Table I, Table II and Table III collect the results
generated for all the described scenarios, considering
the number of homotopy classes to find equal to five
(K = 5). Table III shows the planning time results:
our approach is at least five times faster than Yen’s
approach. Table II details the results related to the
cumulative gain, RHCF while being faster than Yen’s
it also finds homotopy classes with a gain close the
optimal one (i.e 1): the costs of the solutions generated
by the two approaches are only slightly different, the
solutions’ quality of the two approaches are very sim-
ilar. Table I details the diversity of the paths generated
by both approaches: our method outperforms Yen’s in
three environments of the four. Only in one scenario,
wall of people, Yen’s finds more diverse paths.

Fig.5-7 show the metrics trends for different values of
K in the crowd A scenario (the same trends are visible
in the other scenarios too). For small values of K, our
approach is faster than Yen’s algorithm in very com-
plex scenarios (with hundreds of different homotopy
classes), as it is showed in Fig.7. In average, when K is
greater than one fourth of the total possible homotopy
classes in the scenario, the algorithm is slower than
Yen’s. Our approach has a better robust diversity RDk,
considering K up to 25 see Fig.6: the paths produced
are more diverse than the one generated by Yen’s for
small values of K. With a higher value for K, see
Fig.5, our approach converges to the optimal value of
the normalized cumulative gain nCGk values, the one
associated to Yen’s rankings.

V. CONCLUSIONS

In this paper, we introduce the Randomized Homo-
topy Classes Finder, that finds homotopy classes in

TK [ms]
Scenarios RHCF Yen
Crowd A 0.41 4.26
Crowd B 1.53 4.42
Wall of People 0.035 2.07
Surrounded 1.05 5.61

TABLE III
PLANNING TIME RESULTS

an undirected weighted graph built from a Voronoi
diagram. We use the algorithm to find a set of k distinct
socially-aware paths from which the robot chooses the
best one to follow in terms of a social cost function.
Our experimental evaluation shows that our approach
is faster than Yen’s approach. Moreover, as the cumu-
lative gains results show, the paths produced by our
approach are not far from the ones generated by Yen’s
that finds the true k best paths. A key property is that
our approach computes a set of more diverse paths
respect to the baseline: usually different paths share
few edges which make them robust to invalidation due
to unexpected obstacles.

In future work, we intend to further improve the time
performance of the RHCF by introducing a discounting
factor that biases the search towards a not frequently
visited subset of the state space, therefore increasing the
probability to generate paths not yet found. Moreover
we are interested to couple our approach with an
informed (weighted) Voronoi diagram that implicitly
encodes the social context of the scene. Finally, we plan
to integrate our algorithm in a hierarchical framework
where an optimal sampling-based motion planner gen-
erates (locally) optimal kinodynamic trajectories in the
best homotopy class found by RHCF.

ACKNOWLEDGEMENTS
The authors thank Markus Kuderer and Christoph

Sprunk for valuable discussions and feedback. This
work has partly been supported by the European
Commission under contract number FP7-ICT-600877
(SPENCER)

REFERENCES
[1] R. Triebel, K. Arras, R. Alami, L. Beyer, S. Breuers, R. Chatila,

M. Chetouani, D. Cremers, V. Evers, M. Fiore, H. Hung,
O. A. I. Ramírez, M. Joosse, H. Khambhaita, T. Kucner, B. Leibe,
A. J. Lilienthal, T. Linder, M. Lohse, M. Magnusson, B. Okal,
L. Palmieri, U. Rafi, M. van Rooij, and L. Zhang, “Spencer: A
socially aware service robot for passenger guidance and help in
busy airports,” in Proc. Field and Service Robotics (FSR), 2015.

[2] N. J. Nilsson, “Problem-solving methods in artificial intelli-
gence,” 1971.

[3] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,”
in Int. Conf. on Robotics and Automation (ICRA), Detroit, USA,
1999.

[4] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional
configuration spaces,” Robotics and Automation, IEEE Transactions
on, vol. 12, no. 4, pp. 566–580, 1996.

[5] S. Koenig and M. Likhachev, “D* lite.” in AAAI/IAAI, 2002, pp.
476–483.

[6] D. Demyen and M. Buro, “Efficient triangulation-based
pathfinding,” in Proc. of the AAAI Conf. on Artificial Intelligence
(AAAI), 2006.

[7] S. Eriksson-Bique, J. Hershberger, V. Polishchuk, B. Speckmann,
S. Suri, T. Talvitie, K. Verbeek, and H. Yıldız, “Geometric k short-
est paths,” in 26th Symposium on Discrete Algorithms (SODA).
SIAM, 2015.

[8] J. Y. Yen, “Finding the k shortest loopless paths in a network,”
management Science, vol. 17, no. 11, pp. 712–716, 1971.

[9] S. Bhattacharya, V. Kumar, and M. Likhachev, “Search-based
path planning with homotopy class constraints,” in Third Annual
Symposium on Combinatorial Search, 2010.

[10] M. Kuderer, C. Sprunk, H. Kretzschmar, and W. Burgard, “On-
line generation of homotopically distinct navigation paths,” in
Int. Conf. on Robotics and Automation (ICRA), 2014.

[11] N. Katoh, T. Ibaraki, and H. Mine, “An efficient algorithm for
k shortest simple paths,” Networks, vol. 12, no. 4, pp. 411–427,
1982.

[12] P. Vela, A. Vela, and G. Ogunmakin, “Topologically based
decision support tools for aircraft routing,” in Digital Avionics
Systems Conference (DASC), 2010 IEEE/AIAA 29th, 2010.

[13] C. Voss, M. Moll, and L. E. Kavraki, “A heuristic approach
to finding diverse short paths,” in Int. Conf. on Robotics and
Automation (ICRA), 2015.

[14] D. Eppstein, “Finding the k shortest paths,” SIAM J. Computing,
vol. 28, no. 2, 1998.

[15] E. Hernandez, M. Carreras, and P. Ridao, “A comparison of
homotopic path planning algorithms for robotic applications,”
Robotics and Autonomous Systems, vol. 64, no. 0, 2015.

[16] K. D. Jenkins, “The shortest path problem in the plane with
obstacles: A graph modeling approach to producing finite
search lists of homotopy classes, master’s thesis,” in Monterey,
California, Naval Postgraduate School, 1991.

[17] A. W. Brander and M. C. Sinclair, “A comparative study of k-
shortest path algorithms,” Proc. of 11th UK Performance Engineer-
ing Workshop, 1996.

[18] T. Linder and K. O. Arras, “Multi-model hypothesis tracking
of groups of people in RGB-D data,” in IEEE Int. Conf. on
Information Fusion (FUSION’14), Salamanca, Spain, 2014.

[19] M. Luber, G. D. Tipaldi, and K. O. Arras, “Place-dependent peo-
ple tracking,” International Journal of Robotics Research, vol. 30,
no. 3, March 2011.

[20] D. Helbing and P. Molnar, “Social force model for pedestrian
dynamics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.

[21] D. Vasquez, B. Okal, and K. O. Arras, “Inverse reinforcement
learning algorithms and features for robot navigation in crowds:
an experimental comparison,” 2014.

[22] T. Kruse, A. Kirsch, H. Khambhaita, and R. Alami, “Evaluating
directional cost models in navigation,” in Proceedings of the 2014
ACM/IEEE international conference on Human-robot interaction.
ACM, 2014, pp. 350–357.

[23] E. Q. Martins and M. M. Pascoal, “A new implementation of
Yen’s ranking loopless paths algorithm,” Quarterly Journal of the
Belgian, French and Italian Operations Research Societies, vol. 1,
no. 2, pp. 121–133, 2003.

