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Abstract—One of the key requirements of autonomous mobile
robots is a robust and accurate localisation system. Recent
advances in the development of Monte Carlo Localisation (MCL)
algorithms, especially the Normal Distribution Transform Monte
Carlo Localisation (NDT-MCL), provides memory-efficient reli-
able localisation with industry-grade precision. We propose an
approach for building an informed prior for NDT-MCL (in
fact for any MCL algorithm) using an initial observation of
the environment and its map. Leveraging on the NDT map
representation, we build a set of poses using partial observations.
After that we construct a Gaussian Mixture Model (GMM)
over it. Next we obtain scores for each distribution in GMM.
In this way we obtain in an efficient way a prior for NDT-
MCL. Our approach provides a more focused then uniform initial
distribution, concentrated in states where the robot is more likely
to be, by building a Gaussian mixture model over potential poses.
We present evaluations and quantitative results using real-world
data from an indoor environment. Our experiments show that,
compared to a uniform prior, the proposed method significantly
increases the number of successful initialisations of NDT-MCL
and reduces the time until convergence, at a negligible initial cost
for computing the prior.

I. INTRODUCTION

Localisation is a key component of most mobile robot sys-
tems today, e.g. in field robotics, intra-logistics or assistance
robots. The main focus over the past years has been to increase
localisation accuracy and efficiency. Multiple solutions are
already widely employed. For large outdoor environments,
localisation approaches are often based on GPS, while for
indoor environments, industrial localisation systems are typ-
ically based on active or passive beacons. Such systems are
capable of accurate localisation, although visibility constrains
and the requirement for specific infrastructure in the form of
installed beacons or GPS satellites is an important drawback.
These localisation methods in current practice constrain robots
to operate only within limited spaces, and additionally they
impose additional deployment costs.

Conversely, it is very common in the robotics community
to use map-based localisation approaches without additional
infrastructure. Monte Carlo Localisation (MCL) [1] is one
of the most popular map-based localisation approaches and
has been shown to be robust in real-world scenarios [1]–
[3]. Recent works of Saarinen et al. [4] and Valencia et
al. [5] have shown that by using the Normal Distributions
Transform (NDT) [6], [7] for representing the environment it
is possible to obtain much higher localisation accuracy with
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(a) Uniform initialization (b) GMM initialization

Fig. 1: Comparing the initial particle distribution using a uniform
prior belief (a) vs an informed prior based on an NDT map (b).

lower memory and CPU requirements, compared to occupancy
grid maps [8]. Thanks to the increased accuracy (localisation
error along the path is less then 3 cm [5]) NDT-MCL provides
localisation good enough to fulfil industrial requirements and
to be used in commercial applications. This improvement en-
ables the development of flexible autonomous robotics systems
that are independent from external infrastructure while still
achieving industry-grade accuracy. However a mechanism for
accurate and fast initialisation and re-initialisation of the NDT-
MCL variants was so far missing. In order to achieve accurate
localisation from the very start of deployment, it is necessary
that the localisation algorithm converges very quickly to the
true pose, which is not the case when using a uniform prior.

The main contribution of this paper is a novel algorithm
for constructing a prior for MCL from the robot’s current
sensor readings, exploiting the NDT map representation. In
fact, the proposed initialisation method can be used together
with any implementation of MCL. However, since it has
been demonstrated [4] that NDT-MCL provides better pose
estimates than occupancy grid based MCL and makes already
use of an NDT map of the environment, we use NDT-MCL.
We address the problem of initialisation and re-initialisation
of NDT-MCL for cases where no external knowledge about
the robot pose is available. We describe a method of building
a Gaussian mixture model (GMM) representing the prior belief
distribution of possible robot poses. The initial set of particles
is then sampled from this GMM.

The remainder of the paper is organised as follows. Sec. II
relates our work to the state of the art. Sec. III introduces our
novel prior for NDT-MCL. Sec. IV describes the experimental
setup and compares the localisation performance obtained with
the proposed informed prior to initialisation with a uniform
distribution.978-1-4673-9163-4/15/$31.00 c© 2015 IEEE



II. RELATED WORK

The Monte Carlo Localisation algorithm was first intro-
duced by Dellaert et al. [1]. The MCL algorithm is a non-
parametric Bayes filter where the belief distribution is repre-
sented as a finite set of particles. In contrast to parametric
representations (e.g. Kalman filters) this has the advantage
that it can represent also multimodal distributions. MCL is
commonly implemented using occupancy grid maps [9] as the
map representation [10].

Over the years, there have been several attempts to improve
the quality of localisation with particle filters [2], [3]. Two
notable recent improvements are NDT-MCL [4] and DT-NDT-
MCL [5]. These approaches use NDT maps [6], [7] rather
than occupancy grid maps for representing the structure of
the environment and for evaluating the sensor model. The
result is a significant improvement in accuracy even with rather
coarsely discretised maps, which enables much more efficient
mapping and localisation, both in terms of memory and CPU
requirements [4].

Using standard MCL, initialisation is typically performed
either by using a normal distribution centred around an initial
guess of the robot pose, or by distributing particles uniformly
all over the map (possibly with the addition of excluding poses
that are known to intersect with obstacles in the map).

A noteworthy modification of the initial distribution of
samples is presented in the work of Yee et al. [11]. In this
work a regular grid of positions over the map is constructed.
To compute the distance between grid points authors uses
Monte Carlo tests to compute the error statistics as a function
of separation. Next, the authors compute the most likely
orientation for each grid point and compute the likelihood for
it. This likelihood is later on used as a weight for a Gaussian
associated to respective grid point. Moreover authors assume
that each one has the same isotropic covariance. In this
way they obtain a Gaussian mixture model which is later
used for initialisation and re-initialisation. The basic idea of
using Gaussian Mixture Model shows some similarities with
method introduced in following paper, however idea of Yee
et al. is closer to uniform initialisation. The grid points are
distributed all over the map and later on the MCL filtering
step is executed to implicitly define contributing particles.
In contrast, our approach cuts the search space by defining
areas of interest based on initial observations which later are
evaluated. Moreover, the approach of Yee et al. uses the strong
assumption that all the distributions are identical and isotropic.

Oh et al. [12] present a method to incorporate additional
information in particles weights. Their method splits the
map into regions and associates to each one a factor that
describes the probability of the robot being inside that area.
This approach introduces an additional bias that decreases the
likelihood of particles in less likely areas (e.g., it is more
likely that a robot is on the street than inside a wall). The
major drawback of this method is the fact that this additional
information is stored in separate static layer and has to be
rebuilt each time some property of the environment changes.

Moreover, any error in this layer might cause undesired
behaviour of the filter by favouring some particles based only
on their location even if they support the wrong hypothesis.

Dual MCL or Mixture MCL [2] suggests to invert local-
isation problem. Instead of first computing the new samples
based on motion and then adjust its belief factor using ob-
servations authors suggest to sample form distribution based
on observation and then adjust the importance factor based on
the previous position of the robot. A similar but more recent
approach is the observation-driven Bayes filter of He and
Hirose [13]. Compared to these approaches, using NDT maps
to generate poses from observations for the initial distribution
is rather straight-forward. In comparison, He and Hirose [13]
require pre-caching four meta-map representations and ap-
proximately one second of processing time per frame. Another
interesting contribution towards implementing mixture MCL
is the work of Elinas and Little [14]. However, in this work
the authors employ stereo vision for localisation purposes and
define a map as a set of SIFT features.

Instead of using SIFT features, we exploit the Normal
Distributions Transform (NDT) environment representation.
This method was introduced by Biber et al. [6] and later on
extended to three dimensions by Magnusson et al. [7]. NDT is
a piece-wise continuous representation, which represents space
as a set of normal distributions, as opposed to occupancy grids,
which represent space as a set of binary random variables.
Moreover thanks to the extension by Saarinen et al. in [15]
NDT Occupancy Map is able to store explicitly information
about free and explored space within the environment, which is
an additional asset in distributing samples over environment.

III. PRIOR DISTRIBUTIONS

We will now describe our informed NDT-based prior for
MCL as well as the baseline uniform distribution.

A. Uniform distribution

As a baseline to evaluate the performance of our proposed
approach we will use a uniform distribution of particles over
the map. This approach was already discussed in the seminal
work of Dellaert et al. [1].

To obtain a uniform distribution of particles over the map
we use a two-step process. In the first step we uniformly draw
one cell from the set of all unoccupied cells in the NDT grid
(that is, all cells that do not contain a Gaussian representation
of the local surface shape). In the second step we uniformly
draw a position and orientation in the given cell. We repeat
these two steps until we have acquired the desired number
of particles. Thanks to this approach we make sure that all
particles are placed in free space in the map, while keeping
the execution time fixed.

B. Particle generation from GMM

In this section we will describe how to build the Gaussian
mixture model (GMM) representing the prior belief distribu-
tion of the robot and how to obtain the initial set of particles
from the GMM.



The procedure is as follows:

1) Obtain promising poses - NDT represents the global
map as a set of Gaussians: MG

NDT = {N (µGj ,Σ
G
j )}NG

j=1

To represent our current observation which is a set of n
two-dimensional point samples z = {pzi (xi, yi)}ni=1, we also
use NDT: Z̄ = {N (µZj ,Σ

Z
j )}NZ̄

j=1 To build a set of possible
poses we first compute the Cartesian product of the global
map and the current observation: MG

NDT × Z̄ = {(g, z̄)|g ∈
MG
NDT ∧ z̄ ∈ Z̄} In this way combine each Gaussian from

observation with each Gaussian from map. Next, for each pair
(g, z̄), we compute the pose q of the robot with respect to g.
To solve this problem first we have to find the transformation,
which will align eigen vectors with highest eigens value in
z̄ and g. Then we apply this transformation on robot pose
qz̄ and as a result we get q. In this process we obtain a set
Q = {qi(xi, yi, θi)}

NzNg

i=1 of possible poses of the robot in the
coordinate frame of the global map. The size of Q depends
on the size of the environment, the sensor field of view and
the map resolution. In experiments we have observed that for
an environment of size 25 x 25 m and resolution of 0.2 m
number of the elements of Q is between 1869 and 3900, for
0.5 m is between 1755 and 2516, and for 1.0 m is between
803 and 1371.
In Fig. 3 we can see how initial set of hypotheses is gen-
erated. We can see that the current observation contains two
distributions (blue and yellow). We align each Gaussian from
the observation with a Gaussian in the map. Since we know
what is the robot pose with respect to each Gaussian, we can
transform robot pose to the global coordinate frame and obtain
a set of possible poses. In Fig. 4 we can see a visualisation of
all possible hypotheses obtained during one such initialisation.
2) Build GMM - The set of poses obtained in the previous
phase implicitly mark regions of interest. To estimate the
likelihood of those map regions we will generate a GMM in
pose space. First we split the state space into a regular voxel
grid V = {vj}NV

j=1. For simplicity of further discussion we
assume that each voxel is a set of all possible poses within
predefined ranges: vj = {(x, y, θ)|x ∈ [xjmin, x

j
max) ∧ y ∈

[yjmin, y
j
max) ∧ θ ∈ [θjmin, θ

j
max)}.For each voxel vj that

contains pose particles we estimate the corresponding normal

(a) Uniform initialisation (b) GMM initialisation

Fig. 2: Track of convergence (500 particles, cell size = 0.2[m]) -
ground truth (red), NDT-MCL localisation estimate (green). We can
see here how many localisation updates are necessary to reach correct
pose estimate.

distribution in the following way:

µ = 1
n

∑i=n
i=1 qi (1)

M = [q1 − µ...qn − µ] (2)
Σ = 1

n−1M
TM (3)

In this way we obtain a Gaussian mixture model repre-
senting an informed prior on the poses: MGMM (Q) =
{N (µj ,Σj)}Nj=1 where N ≤ |Q| and N ≤ |V|. The next
step is to estimate the weight wj of each distribution in the
set MGMM (Q). As a weight we will use the L2 likelihood
of the current observation at the mean pose, given the global
map. The pose likelihood is computed as in Saarinen et al. [4]:
wj = (

∑N
i=1 L

i
2)−1Lj2 L2 likelihood is the likelihood that the

robot has a particular pose because it is consistent with several
parts of the observation.

Lj2(Z̄|qj ,MG
NDT ) = (4)∑NG

i=1

∑NZ̄

k=1 d1 exp(−d2

2 µ
T
ik(RjΣ

G
i R

T
j + ΣZk )−1µik)

where µik = Rjµ
Z
i + tj − µmk and d1 and d2 are scaling

factors.
Each pose qj can be represented as a rotation matrix Rj and
translation tj with respect to the global coordinate frame. Lj2
represents the likelihood of the current observation represented
as NDT Z̄ given the global map and the state qj .
Fig. 5 shows the means of all distributions of the GMM
generated from the distribution shown in Fig. 4.
3) Sampling - The final step is to draw a set of initial particles
from the GMM. The probability of drawing a sample q can
be expressed as a sum of n weighted Gaussians: p(q) =∑n
j=1 wjN (q|µjΣj). In this work we assume that obtained

GMM is sparse therefore we can approximate this probability
in the following way: p(q|q ∈ vj) = wjN (q|µjΣj) This
approximation allows us to build a simple two step sampling
algorithm. In the first step we draw a voxel according to its
weight w and in the second step we draw the pose according
to the normal distribution within the voxel.

Fig. 3: Simple example where we can see how does aligning
Gaussians from observation with ones from map leads to initial set
of hypotheses.
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Fig. 6: Success rate [%] (dotted line - average success rate, solid line - the average success rate for 4 best cases)
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Fig. 7: Time until correct pose estimate [s (# of updates)]
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Fig. 8: Time until convergence [s (# of updates)]
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Fig. 9: Time for computing the prior distribution [ms]

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

We have evaluated the approach presented in Section III-B
using two data sets, recorded in a static and a dynamic
environment. The static data set is publicly available1. In
the test data sets, the robot traverses a closed loop (see
Fig. 10) multiple times with velocity of 1 m/s in an indoor
environment. Both data sets were collected in the basement of
Örebro university using a commercial Automatically Guided
Vehicle (AGV) system from Kollmorgen Automation AB. A

1Data sets are available under:
http://mrolab/datasets.html.

Master Controller (VMC 5000) controls the vehicle along
predefined trajectories. The ground truth was obtained with
a commercial infrastructure-based positioning system, which
tracks wall-mounted reflectors using a rotating laser. After
setup and calibration, this system provides accurate (according
to its specification accuracy should be approx. 1 cm or less)
position information. For infra-structure free localisation we
use a LIDAR with field of view of 270 degrees and range
of 18 m. The data set covers a 25 m × 25 m area. In both
cases the robot was travelling along the same predefined path
with the same velocity. To emulate a dynamic environment,
we have asked a group of people to not only move around in
the environment, but also on purpose to disturb the localisation



process by changing the shape of the environment with panels
or even to occlude the laser with them.

The goal of the experiment was to investigate how using an
informed prior (see Fig. 1) will affect global localisation. The
comparison in this paper is done between uniform initialisa-
tion of NDT-MCL and GMM initialisation of NDT-MCL, as
described in Section III.

We have chosen 60 random points along the path which rep-
resent different starting positions for the localisation process.
We use the following four evaluation criteria:

1) Success rate - how many times the robot manages to
localise itself correctly. We consider that the robot has
localised it self correctly if the error is less then 10 cm.

2) Initial localisation time - how long does it take to
minimise the localisation error with respect to ground
truth. In case of localisation failure the measurement was
discarded.

3) Convergence time - how long it takes before the value of
one standard deviation is less then 10 cm and 5 degrees.
This metrics was computed only for the cases when the
localisation was performed successfully.

4) Computation time - how much time it takes to generate
the prior.

We have tested five particle populations sizes (25, 100, 250,
500, 1000 particles) for maps of three different resolutions (0.2
m, 0.5 m, 1.0 m). For the coarsest map (resolution 1m), the
resolution of the voxel grid in pose space was 1.5 m and π

2
radians, and for the other two map resolutions the pose voxel
grid was 0.5 m and π

2 radians. Please recall that we have
been performing our tests using NDT maps and evaluating
two different priors for NDT-MCL. If we would use a regular
occupancy or octomap it would be impossible to achieve
accuracy below 10 cm for maps with grid cells as big as
0.5x0.5 m2 or 1.0x1.0 m2 [4].

B. Results

In Fig. 6 we can see that, as long as the map resolution is
sufficient enough for accurate localisation, we achieve a high
success rate using the GMM prior even with a relatively small
number of particles. In the best case the success rate was as

Fig. 4: Poses generated in step 1 of the initialisation algorithm, from
which the GMM is created in step 2.

high as 86% for the static environment and 76% for dynamic.
The best result obtained with a uniform distribution for popula-
tion containing 1000 particles is only as high 56%. It is worth
noticing that for a static environment above some threshold
(in our experiments around 100 samples), the average success
rate is stable and does not change much when changing the
number of particles and depends mainly on the map resolution.
In case of the dynamic environment we can observe that the
success rate increases with the number of particles, however,
the success rate is high for each population equal or bigger
than 100 particles. Also for dynamic environments the success
rate is higher for initialisation using GMM than with uniform
distribution. In Fig. 6 the average success rate across all
populations is marked for a given map resolution with a dotted
line. The average success rate for the four biggest sample
populations is marked with a solid line. We can see that the
average success rate with an NDT-based prior is always higher
then the initialisation with a uniform prior. This observation
is true both in static and dynamic environment.

Another interesting feature of the NDT-based prior is that
it allows to localise quickly (see Fig. 7). In the best case the
average localisation time was as short as 3 seconds (or 38
updates of the particle filter), while initialisation based on a
uniform distribution was never faster then 18 seconds (228
updates). All the timing plots in Figs 7–9 show the results
only for the cases where the filter succeeded in localising. As
a consequence, the plot for 25 uniformly distributed particles
in Fig. 7(a) shows zero seconds, because none of those runs
succeeded. In Fig. 7 it is visible that increasing the size of the
particle population does not change significantly time before
successful localisation. The time needed by both distributions
to converge is comparable and usually low, despite of that
time needed to localise correctly is significantly shorter for
proposed prior then for uniform one. The result of this time
difference is visible in Fig. 2. Where the pose estimate is
following the correct estimate.

In Fig. 9 we can see that in most cases computing the GMM-
based prior only takes a few milliseconds more than computing
a uniform prior. If we compare this value against the average
time between two laser scans in this data set, which is 70 ms,
we can assume that it is possible not only to use this method

Fig. 5: An example of set of mean values for each component in
GMM in map with resolution 0.2 m.



Fig. 10: Test environment with predefined path [4].

for initialisation but also for re-initialisation. If we want to use
NDT-based prior for non-NDT MCL we have to remember that
additional time will be required to build map of environment
using NDT.

To evaluate the usefulness of the GMM method in case
of re-initialisation, we have manually triggered resets of the
localisation system during the robot runs in static environment.
We have observed that after a high spike in the localisation
error (at the moment of reset) the error drops again. During
the test run we have reset the system 26 times and managed
to recover in 20 cases when using the informed prior. For
the system using uniform distribution for re-initialisation the
success rate was only 7 recoveries for 26 resets.

V. CONCLUSIONS

In this paper we have introduced a method for constructing
an informed prior for MCL. Based on a map of the environ-
ment we build a GMM which represents likely poses of the
robot. Then we sample from the GMM distribution to obtain
the initial set of particles.

The method introduced in this paper shows a way to
implicitly define regions of interest, by removing areas that
have no support from current observations. This is a major
improvement in comparison to methods which are evaluating
poses all over the given map. Moreover, the method builds and
maintains a probabilistic model of the robot pose estimate on
the fly. Therefore it does not require any additional process
after obtaining the map of environment, such as assigning
environment classes to regions of the map [12]. It also makes
the method flexible enough to incorporate new information ac-
quired by the sensor. Although such observation-driven priors
have been used for other MCL implementations previously,
this is the first implementation of a method for generating an
informed prior for MCL. The main motivation for our method
is the recent demonstrations [4], [5] of using NDT-MCL to
achieve superior accuracy in dynamic industrial environments
while maintaining a small memory footprint and low CPU
requirements.

We also have performed a series of experiments both in a
static and a dynamic environment demonstrating that the pro-
posed method is able to perform global localisation with fewer

particles, in comparison to the baseline uniform distribution.
Moreover we have shown that an NDT-MCL particle filter
initialised with NDT-based prior converges faster than when
using a uniform distribution. We have also demonstrated that
the significantly decreased localisation time (as measured in
number of seconds or laser scans after initialisation) can be
achieved with only a negligible one-time computational cost
of a few milliseconds for generating the prior.

VI. FUTURE WORK

In future work, we will extend the GMM method to 3D and
also evaluate its performance with sensors that have a smaller
field of view (e.g., RGB-D cameras).
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