
Learning Socially Normative Robot Navigation Behaviors
with Bayesian Inverse Reinforcement Learning

Billy Okal Kai O. Arras

Abstract— Mobile robots that navigate in populated environ-
ments require the capacity to move efficiently, safely and in
human-friendly ways. In this paper, we address this task using
a learning approach that enables a mobile robot to acquire navi-
gation behaviors from demonstrations of socially normative hu-
man behavior. In the past, such approaches have been typically
used to learn only simple behaviors under relatively controlled
conditions using rigid representations or with methods that
scale poorly to large domains. We thus develop a flexible graph-
based representation able to capture relevant task structure and
extend Bayesian inverse reinforcement learning to use sampled
trajectories from this representation. In experiments with a
real robot and a large-scale pedestrian simulator, we are able
to show that the approach enables a robot to learn complex
navigation behaviors of varying degrees of social normativeness
using the same set of simple features.

I. INTRODUCTION

Mobile robots are increasingly being deployed in human
populated spaces such as airports, shopping malls, or ware-
houses for use-cases such as guidance, information provision,
or transportation. Such robots are required to be socially
normative with respect to the human occupants [1], for ex-
ample by respecting personal spaces, people’s arrangements
in groups or by generating legible motion behavior (see
Fig. 1 for an example). This is in addition to optimizing
standard navigation metrics such as shortest paths, minimal
energy or time to goal. Thus, in the design of robot be-
havior, we need to unify the objectives of being socially
compliant, optimizing subjective human comfort metrics, and
being efficient by optimizing objective task metrics. “Social
navigation” is an increasingly active research area which
deals with this combination by considering people as more
than dynamic obstacles, but rather as rational agents with
intentions, attributes, preferences and social relations. This
comprises advanced perception capabilities of the robot in
terms of human detection, tracking and analysis but also the
questions of how to represent and acquire such behaviors.
Manual design approaches using models like Proxemics [2]
have proven difficult and generalize poorly due to model
specificity as demonstrated by [3], [4]. Alternatively, the
problem can be posed as being data-driven using learning
techniques. In particular Markov decision process (MDP)
representations in which part(s) of the model such as the
reward function is learned from data using Inverse Rein-
forcement Learning (IRL) is a promising approach as shown
in [5], [6], [7], [8] among others.

Both authors are with the Social Robotics Lab, Univ. of Freiburg. Kai Ar-
ras is also with Bosch Corporate Research, Germany, {okal, arras}@cs.uni-
freiburg.de. This work has been partly supported by the European Commis-
sion under contract number FP7-ICT-600877 (SPENCER).

Fig. 1. Socially normative behavior example. Three persons are engaged
into a photography activity and the robot should not drive through the
group even though there is enough space and the path would be shorter and
smoother. The corresponding costmap from the learned model is shown on
the right, with darker cells having higher costs. The strength of the social
relations between individuals are indicated in percent.

In this work, we take the latter approach and present a
new efficient way to model socially normative behavior using
MDPs and Bayesian IRL. In doing so, we focus on spatial
robot motion behaviors (as opposed to the large variety
of possible human behaviors) and assume that the relevant
factors that govern motion behavior can be distinguished
by features of the robot environment and occupants therein
such as distances or relative headings or velocities. We also
assume that the resulting robot behaviors can be assessed
by examining paths executed by a robot in relations to the
aforementioned features. However, by using MDPs, we face
the challenges of inflexible representations in large domains,
and consequently, poor scalability of behavior learning algo-
rithms. We thus develop a graph-based representation which
is flexible and allows integration of task-specific constraints
directly into the MDP representation. We then extend an
existing Bayesian IRL algorithm to realise a scalable variant
that takes advantage of the new representation. The resulting
setup enables us to address the questions of how a robot’s
efficiency is affected by social normativeness and how a
robot can learn different complex navigation behaviors of
varying degrees of social normativeness with the same set
of basic features. To study this, we consider three scenarios:

1) Navigation in medium density crowds typical for e.g.
lobbies, shopping malls or transit waiting areas.

2) Navigation in high density crowds with distinct and
persistent movement directions such as in narrow hall-
ways with opposing flows.

3) Navigation in densly crowded and chaotic scenes such

as large hallway intersections or meeting points.
The rest of the paper is organised as follows: in II we

discuss related work, in III where we present the details of
our approach. In IV and V we describe our experiments and
discuss the results. Finally, conclusions are given in VI.

II. RELATED WORK

Existing work that strives to achieve socially normative
navigation can be divided into two main categories de-
pending on whether the behaviors are learned or manually
designed. Those using learned behaviors include [5], [7],
[8], in which Henry et al. [5] and Vasquez et al. [7]
address the problem of learning to navigate efficiently in
crowds of simulated pedestrians. Kim and Pineau [8] con-
sider small groups of people and carry out experiments
with a robotic wheelchair. These approaches also use an
MDP formalism for learning and discretize state and action
spaces, in particular using “grid world” like representation of
state and action spaces, which are popular in reinforcement
learning literature [9]. However, such discretisation is not
efficient for robots operating in large spaces because; (i) the
number of states gets very large, (ii) actions remain highly
constrained to either 4- or 8-neighborhoods which ignore
typical constraints on mobile robots such as non-holonomy.

Other works using manually designed behavior or not
based on IRL, include Sisbot et al. [10] who developed a
human-aware motion planner by using Gaussians to model
the personal space of individuals. Svenstrup et al. [11] used
dynamic potential fields and RRT to plan trajectories around
multiple people but without considering social relations
between them. Lu et al. [12] developed a method to tune
layered cost-maps for social navigation, we however want an
automatic discovery of such cost-maps in continuous spaces.

On scalable learning algorithms, Neumann et al. [13]
extended the work of Guestrin and Ormoneit [14] to build
a graph-based representation for continuous reinforcement
learning tasks. We build upon this work by adding improved
exploration and then leverage the resulting flexible repre-
sentation to also improve upon Bayesian IRL algorithm of
Ramachandran and Amir [15]. To achieve this, we also draw
from earlier work of Ng and Russell [16] in using IRL in
infinite state spaces via sampled trajectories.

III. METHOD

An MDP is denoted by 〈S,A, T, r, γ〉 where S and A are
state and action spaces respectively. T (s, a, s′) = p(s′ | s, a)
is the transition function read as the probability of going to
state s′ by taking action a in state s, γ ∈ [0, 1) is a discount
factor and r : S × A 7−→ R is the reward function where
r(s, a) is the reward obtained by taking a in s. A policy
π : S 7−→ A specifies actions in every state and gives rise
to two additional quantities, a value function,

V π(s) = r(s, π(s)) + Es′∼T (s,π(s),·) [V π(s′)] (1)

and an action-value function (also called Q-function),

Qπ(s, a) = r(s, a) + Es′∼T (s,a,·) [V π(s′)] . (2)

s

g
1

2

3

4

5

v(3) : (x, V,Q, π, . . .)

Fig. 2. Conceptual controller graph. s and g indicate start and goal states,
the policy is shown in red double line. Example vertex labels are also shown.
Reverse edges are shown with dotted lines.

A key task in reinforcement learning is to find an optimal
policy π∗ that maximizes V π(·) for all states. Such an opti-
mal policy is characterized by the Bellman optimality criteria
(see [9] for details) as π∗(s) = arg maxa∈AQ

π(s, a). We
interpret the reward function as the “intrinsic representation
of behavior” and the policy execution traces (state-action
pairs) to be the realization of such behaviors.

In this work, the reward function is a priori unknown and
state and action spaces are very large i. e. S , Rn while A ,
SS = {g | g : S 7−→ S}. Additionally, we assume robots
to be motion-constrained e. g. by non-holonomic constraints
which make that not all actions in A can be executed. We
address these challenges in Sec. III-A and III-B.

A. Representation Learning

In this section, we seek an efficient and flexible representa-
tion that is able to capture relevant structure of our navigation
tasks. We build upon our previous work [17] from which we
highlight the key aspects here, starting with the following
definition,

Definition 1 (Controller Graph (CG)). A weighted labeled
graph G = 〈V, E ,W 〉 with vertices V , edges E and a transi-
tion matrix W , such that V ⊂ S and E = {(vi, vj)a |wi,j >
0, ∀vi, vj ∈ V, a ∈ A}.

Concretely, vertices are “macro states” containing state
vectors x ∈ Rn and edges (vi, vj)a are short trajectories xi:j
between vertices i and j, called local controllers. Additional
action information can be stored in local controllers such as
angles or speeds. As such, they provide task decomposition
and can incorporate task-specific constraints like speed limits
into the representation. For instance, one can use predefined
sets of motion primitives as local controllers. In this work,
we use the POSQ steer function by [18] which is well-
suited for differential-drive mobile robots. Policies in a CG
are graph walks (or paths) from start to goal states (see
Fig. 2). CGs can thus be seen as discrete generative models of
continuous domains as pointed out by [19]. Because the edge
lengths vary, the resulting graph represents a semi-Markov
decision process (SMDP). Ergo, the rewards accumulated

1: procedure BUILDCG(D, s, g,Nmax, δ)
2: Generate k random states {s1, . . . , sk}
3: G ← INITGRAPH(s, g, {s1, . . . , sk})
4: ξbest ← FINDPOLICY(G, s, g)
5: while |V| ≤ Nmax do
6: Vb ← {v ∈ V|v ∈ ξbest} // Exploitation set
7: if p > δ then // p ∼ Uniform(0, 1)
8: Expand from Vb
9: else

10: Expand from V \ Vb // Exploration
11: end if
12: ξbest ← FINDPOLICY(G, s, g)
13: end while
14: return G
15: end procedure

Algorithm 1: Building Controller Graphs

while traversing an edge e are given by (3).

r(e) ,
∫ |e|

0

γtr(st, at) dt (3)

where r(st, at) represents instantaneous reward and | · |
denotes length operator. Local controllers can thus be inter-
preted as options in hierarchical reinforcement learning [20].
We can therefore define values of vertices as follows,

V π(vi) = r(e) + Evj∼T (vi,π(vi),·) [V π(vj)] (4)

where e = (vi, vj)a, and T (vi, π(vi), ·) = W i and π(vi)
selects one edge from the available outgoing edges at vi.
The Q function is analogously defined.

The graph is initialized using uniformly sampled states
from S (lines 2-3) in Alg. 1, edges are added by running local
controllers from each vertex. Alternatively, samples from ex-
pert demonstration trajectories can be used for initialization.
A CG is iteratively built online using heuristics to trade off
exploration and exploitation as shown in Alg. 1. Exploitation
involves sampling new states around those with high values
hence likely to be on the path of the optimal trajectory to the
goal (policy), while exploration encourages coverage of S so
that new regions are discovered by sampling nodes around
those with few neighbors over some radius. Expanding from
a set (lines 8 and 10 in Alg. 1) involves randomly selecting
states from the set, executing the local controller for a limited
time then adding the state at the end of the local controller
to the graph. Vertices are labeled with data such as V π(·),
π(·) and Qπ(·, ·) which are updated using policy iteration at
every iteration of adding new states. Altogether, the resulting
CG usually contains a small number of vertices, for example
a 10m× 10m room can be represented by only 140 vertices
in our context as shown in Fig. 3, while a standard grid
representation with 10cm resolution would yield 104 cells,
and much limited actions from cell to cell.

B. Learning Socially Normative Behaviors

We assume that M expert trajectories are given as ΞE =
{ξ1, . . . , ξM}, where each ξm = {(s1, a1), . . . , (sHm , aHm)}

Fig. 3. Example learned graph representation for a simulated 10m ×
10m environment. Start states are indicated in black, goal in green, other
states are colored using jet mapping indicating their values. The policies
(trajectories) from the starts are shown in green. Persons in the scene are
shown using ellipses with arrows indicating their headings, while pairwise
relation between persons are shown using red lines between them. Edges
are shown using straight lines for ease of visualization, but in practice they
can be arbitrary curved trajectories resulting e.g. from POSQ [18] paths.

for some horizon Hm. We want to recover the reward func-
tion underlying the behavior that produced these trajectories.
The set of such reward functions has been characterized
in [16]. However, defining an appropriate objective function
to find the underlying reward is a challenge since the
reward is fundamentally unidentifiable [16]. We also want to
model uncertainty e. g. from experts that acting sub-optimally
during the demonstrations. We thus adopt the Bayesian IRL
(BIRL) approach by Ramachandran and Amir [15] and thus
seek to find the reward posterior distribution given by,

p(r |Ξ) ∝ p(Ξ | r) p(r)

=
p(Ξ | r) p(r)∫
p(Ξ | r) p(r) dr (5)

where the prior is given by

p(r) =
∏

(s,a)∈S×A

p(r(s, a)) , (6)

assuming i.i.d. rewards, and the data likelihood term by

p(Ξ | r) =
∏
ξ∈Ξ

∏
(s,a)∈ξ

exp (βQ∗(s, a, r))∑
b∈A exp (βQ∗(s, b, r))

(7)

where Q∗(·, ·, r) is equivalent to Qπ(·, ·) in which π is
obtained using reward function r. β is an expert optimality
parameter interpreted as our confidence on the demonstrator
picking optimal actions. The posterior in (5) is hard to
compute due the intractable normalizing factor, thus [15]
uses PolicyWalk, a Markov chain Monte Carlo (MCMC)
algorithm to approximate the reward posterior from samples
which only requires ratios of the posterior. However, such
MCMC approaches typically involves solving an MDP to

evaluate every sample (including rejected ones), which is
costly for large MDPs and undermines scalability.

Ng and Russell [16] developed an iterative procedure that
uses randomly sampled trajectories to recover rewards in
very large (possibly infinite) spaces. In their work, they used
linear programming (LP) to search for a new reward in a
restricted space of policies at every iteration. We extend
their approach so as to develop Trajectory BIRL (TBIRL)
algorithm. We represent the reward function as a linear
combination of d features f(s, a) : S × A 7−→ R so
that r(s, a) , wTf =

∑d
i=1 wifi where w is a vector

of weights which control importance of each feature. The
values of expert policy and candidate policies need to be
computed at every iteration. The expert policy value V πE

can be empirically estimated by,

V̂ πE =
∑
ξ∈ΞE

|ξ|∑
(s,a)∈ξ,t=0

γt
d∑
i=1

wifi(s, a) (8)

while the values of candidate policies can be estimated in
a similar way using sampled trajectories or by dynamic
programming [21]. We use trajectories sampled from a CG
which are already better suited for estimating values of
policies as they capture relevant task structure. By employing
a Bayesian formulation we are able to explicitly model
uncertainty in expert demonstrations such as optimality. Such
a Bayesian formulation also enables us to examine the distri-
bution of reward functions to better understand the resulting
behaviors. We therefore define a new data likelihood for
BIRL that directly uses sampled trajectories as

p(ΞE ,ΞG | r) =
∏

ξe∈ΞE

exp (βζ(ξe))

exp (βζ(ξe)) +
∑k
i=1 exp (βζ(ξgi))

(9)
where ζ(ξ, r) =

∑
(s,a)∈ξ Q

π(s, a), with π obtained from
r. Further ξgi ∈ ΞG is a trajectory sampled using a candi-
date policy at iteration i, while k is the current iteration.
Intuitively, as the reward improves, we are able to generate
sample trajectories of increasing similarity to the ones from
the expert. The new likelihood term in (9) is similar to the
one in (7) when each trajectory is interpreted as a single
action from start to goal. The negative log-likelihood of (9)
is convex, therefore we can pick a convex prior so that the
full posterior is convex, and then use tools from optimization
to quickly find a mode of the distribution for our reward
estimate. Alg. 2 shows the details of our TBIRL algorithm.

C. Reward Features

As already mentioned in Sec. III we model the reward
function as a linear combination of features of the state
and action spaces. The choice of these features is vital as
they have the task to fully encode the relevant influences
that govern the desired behaviors (as also found in our
past work [7]). Here, we use a set of simple domain-
specific features based on insights from past work in social
navigation. They include distance to entities in the scene
(persons, obstacles, pair-wise relations within social groups
represented as lines), making three features, and relative

1: procedure TBIRL(ΞE , ε,K)
2: Pick π0 randomly
3: ΞG ← {ξg0} // Generate ξg0 using π0

4: for k ← 1,K do
5: rk ← arg maxr p(ΞE ,ΞG | r) p(r) // (6), (9)
6: Estimate V̂ πE , V̂ πE , πk using rk
7: if ||V̂ πE − V̂ πE ||p ≤ ε then
8: return rk
9: else

10: ΞG ← ΞG ∪ {ξgk} // Generate ξgk using πk
11: end if
12: end for
13: return rk
14: end procedure

Algorithm 2: BIRL using sampled trajectories

heading of persons with respect to the robot’s goal, heading
deviation from goal and distance to goal, making another
three features. Unlike [5], [8] we do not discretize the real-
valued feature responses. Note that more features such as
high-level human attribute information of age, gender, visual
appearance or head orientation can be readily employed in
such a learning framework.

D. Navigation using Learned Rewards
Once we have learned a reward function for a navigation

task, we use the function to define costs of social norma-
tiveness for planning. This can be done either by dynamic
costmaps [12] for planning or by injecting the costs at
an early stage into an objective function of a cost-optimal
planner. When using RRT-based planners, for example, the
learned rewards can be used to evaluate extensions while
growing the tree, hence producing a socially normative tree.

IV. EXPERIMENTS

The purpose of the experiments is twofold. First, to
demonstrate that, using the proposed learning approach,
different complex robot behaviors of varying degrees of
social normativeness can be learned with the same set of
basic features, and second, that the model generalizes with
respect to various behavioral goals. We carry out quantitative
experiments in simulation and qualitative experiments on a
real robot. The three simulated environments, as mentioned
in Sec. I, are the lobby scenario (30m×30m, medium density
non-moving crowd), the hallway scenario (120m×40m, high
density crowd with persistant flows), and the intersection
scenario (40m×40m, densly crowded, chaotic), see Fig. IV.
The sizes were chosen to reflect real-world applications
which serve as practical motivation for this work. We present
10 expert demonstrations of each behavior by manually
driving the robot through the scenes using a joystick.

In the lobby scenario, we are interested in replicating the
complex human navigation behaviors observed in parties or
general gathering. We learn three navigation behaviors that
account for varying degrees of social compliance:

1) Polite – always avoid breaking pair-wise social rela-
tions and intruding people’s intimate or personal spaces

Fig. 4. The three scenarios used in the experiments. Pair-wise social relations are visualized with lines between agents, the path planned by the robot
is shown in red while its executed trajectory is shown in green. Red cells indicate walls in the environments. The costmaps which represent the learned
behaviors are shown in gray, with dark regions indicating higher cost. Left: lobby-like scene with 50 persons and 18 pair-wise relations, center: hallway
scene with 400 persons moving in two distinct “flows” in which the robot correctly avoids the opposing flow at the expense of taking a longer path, right:
intersection scene with 280 persons crossing each others’ paths. The robot performs slipstream navigation by following persons with similar bearing.

on the way to the goal. We make the assumption that
it is impolite to split up groups or “creep” on people.

2) Sociable – avoid pair-wise social relations and get
as close to people as possible. This is an example
of a robot serving drinks at a party or handing out
pamphlets in a shopping mall.

3) Rude – getting to the goal as fast as possible ignoring
social relations and personal spaces.

In the hallway and intersection scenarios, we aim at an
understanding of how social compliance affects efficiency
in terms of task metrics. To this end, we demonstrate two
behaviors for the hallway scenario,

1) Merge – joining the flow of people heading towards
the robot goal, i. e. “gliding in the flow towards goal”

2) Nomerge – “wading” through the flows using the
shortest path to goal,

and two behaviors for the intersection scenario,
1) Slipstream – following closely behind a person or a

group of persons on the way to the goal i. e. using
other agents that help to “clear the road”.

2) Direct – again “wading” through the crowd using the
shortest path to goal.

For simulation, we use an open-source1 pedestrian simula-
tor [22] in which agents are guided by potentials governed by
the social force model [23]. The simulator provides realistic
walking pedestrians as well as social groupings using one
unified model. For both simulation and the experiments with
the real robot we use the learned behaviors to generate
costmaps, on which we plan global paths using weighted
A∗ then drive the robot locally using an elastic band local
planner. We use the move base2 framework from ROS [24]
to ensure we have the same configurations in simulation
and on the robot, with only differences in low-level driving
control. As such we implement new costmap layers akin
to [12] in the move base framework which then represent
the new behaviors. This way the behaviors can be intepreted
as a policies for motion planning. Using the standard A∗

planner from ROS [24] eliminates experimental variation, but
advanced planning algorithms such as RRT can also be used
in practice.

1https://github.com/srl-freiburg/pedsim_ros
2http://wiki.ros.org/move_base

A. Experimental Metrics

For evaluation, we use the set of metrics given in [7] and
add a mission completion metric. They include objective
criteria for measuring how efficient the robot behaves in
a standard path planning sense, and subjective criteria that
measure how socially normative a robot behavior is:

• Objective metrics – (i) path length, (ii) cumulative
heading changes (CHC), estimating path smoothness or
how much a behavior causes the robot to maneuver, (iii)
mission completion, the number of times the robot suc-
cessfully reached the goal over multiple runs (mission
is aborted if the robot is “stuck” for more than 10 mins),
(iv) time to reach goal.

• Subjective metrics – (i) number of crossed pair-wise so-
cial relations between persons, (ii) number of intrusions
into circular Proxemics [2] spaces of radii, social space
(1.2m, 3.6m], personal space (0.45, 1.2m], and intimate
space [0, 0.45m].

The goal of the subjective metrics is to emulate the per-
ception of social normativeness by users. Ideally, empirical
studies are conducted to quantify such metrics but given
our simulation setup with very large crowds, the number of
conditions and runs, such studies are beyond the scope of
this paper.

B. Parameters

The algorithms presented here include a number of pa-
rameters. In building controller graphs, we use δ = 0.4 and
Nmax = 440, which we empirically found satisfying. For
learning rewards, we used K = 20 and ε = 0.01. Other
parameters such as Proxemics distances used in the metrics
are acquired from accompanying literature [1].

V. RESULTS

We first give quantitative and qualitative results from the
simulation experiments. All metrics are given as means and
95% intervals from 15 different runs with different start and
goal positions of the robot and different start positions of
the simulated pedestrians. For the hallway and intersection
scenarios, individual walking speeds are randomized as well.

polite sociable rude
Behavior

18.5
19.0
19.5
20.0
20.5
21.0
21.5
22.0
22.5
23.0

P
at

h
L

en
gt

h
[m

]

polite sociable rude
Behavior

7.0

7.2

7.4

7.6

7.8

8.0

8.2

8.4

C
H

C
[r

ad
ia

ns
]

Fig. 5. Navigation results in the lobby scenario using polite, sociable
and rude behaviors showing the two objective metrics path length and path
smoothness in terms of numbers of heading changes along the path. Intervals
show 95% confidence from 15 different runs.

polite sociable rude
Behavior

1.5

2.0

2.5

3.0

3.5

4.0

4.5

P
ro

xe
m

ic
s

(I
nt

im
at

e)

polite sociable rude
Behavior

−20

0

20

40

60

80

100

120

140

P
ro

xe
m

ic
s

(P
er

so
na

l)

polite sociable rude
Behavior

600
650
700
750
800
850
900
950

1000

P
ro

xe
m

ic
s

(S
oc

ia
l)

polite sociable rude
Behavior

−10

0

10

20

30

40

50

60

70

R
el

at
io

n
D

is
tu

rb
an

ce

Fig. 6. Navigation results in the lobby scenario using polite, sociable and
rude behaviors showing the subjective metrics.

A. Simulation Experiments

Figs. 5 and 6 give the objective and subjective metrics
for the lobby scenario. The objective metrics indicate that
socially normativeness leads to a penalty in having to take
longer and less smooth paths with more maneuvers. For the
sociable behavior, we observe even more maneuvers which
is expected for a robot serving cocktails at a party while
respecting relations between persons. Also as expected, the
rude behavior results in the most efficient paths. The results
in the subjective metrics reinforce the message from the
objective counterparts in that social normativeness results
in minimal number of intrusions into people’s spaces while
being rude leads to the opposite. The sociable behavior gets
the robot close to people (large numbers of intrusions into
personal and intimite spaces in Fig. 6), while minimizing
the number of social relation disturbances. People in goups
are correctly approached without breaking social ties at the
expensive of more maneuvers as observed in the decreased
smoothness metric in Fig. 5.

merge nomerge
Behavior

0

20

40

60

80

100

M
is

si
on

su
cc

es
s

ra
te

(%
)

merge nomerge
Behavior

100

105

110

115

120

125

T
im

e
to

go
al

[s
ec

]

Fig. 7. Navigation in the hallway scenario. Left: fraction of times robot
successfully reached the goal. Right: average mission times

For the hallway navigation task, we get the results shown
in Fig. 7. They indicate that being socially normative in
flows i. e. merging with a flow into the direction of one’s
goal, improves reliability in terms of mission completions
at a small price of longer mission times due to the longer
paths that the robot has to take to avoid the opposing flow.
Similarly, for navigation in densely crowded intersections
(Fig. 8), the robot improves its efficiency by identifying and
following persons with similar goal bearings (being in the
slipstream of a person or a group of persons), as manifested
in improved mission completion. The time to arrive at the
goal is again longer for being socially normative, i. e. by
following a person’s slipstream the robot makes more turns
as shown in Fig. IV(right).

These results demonstrate the generalization ability of the
learning approach and the ability of its features to encode the
relevant influences for learning complex navigation behaviors
of varying social normativeness. They also show that the
robot is able to generate behavior that involves temporal
credit assignment (deciding to take a longer path) in order
to achieve a goal that was not specified in its demonstrated
objective (mission completion metric).

B. Experiments with the Robot

We also perform experiments using our robot Daryl, a
differential drive robot with a mildly humanized appearance
for human-robot interaction research. In the experiments,
the robot runs a laser-based group tracker [25] to obtain
social grouping probabilities between individuals. In case
of grouping probabilities above 0.5, we assume a pair-

direct slipstream
Behavior

0

20

40

60

80

100

M
is

si
on

su
cc

es
s

ra
te

(%
)

slipstream direct
Behavior

59
60
61
62
63
64
65
66
67
68

T
im

e
to

go
al

[s
ec

]

Fig. 8. Navigation in the intersection scenario. Left: fraction of times
robot successfully reached the goal. Right: average mission times.

Fig. 9. Experiments with the robot Daryl showing a socially normative behavior in a group of people. Setup and resulting costmaps are shown side-by-
side, darker cells are higher cost, the robot path is shown in green. Left: two persons engaged in a conversation, the robot drives around them for social
normativeness. Right: two persons without social relation, the robot drives in between them while respecting their personal spaces.

wise social relation. We again use the learned behaviors
to generate costmaps on which we plan global paths with
A∗ and drive the robot using an elastic band local planner
from ROS. Fig. 9 shows two example behaviors realized
on the robot. The robot avoids splitting a group of people
engaged in a conversation for which the tracker has estimated
a high-probability pair-wise social relation. Without such
an estimate, the robot drives in between the persons still
respecting their personal spaces. Fig. 1 is an example with
people engaged into a photography activity.

VI. CONCLUSIONS

We presented a learning approach to acquire socially nor-
mative robot navigation behavior from demonstrations using
BIRL. To obtain a practical algorithm for large domains,
we proposed a graph-based representation of the continuous
environments on which we learn navigation behaviors using
a new extension of BIRL that relies on sets of sampled
trajectories and is applicable to large scale domains. We
conducted experiments with a real robot and three differ-
ent simulated environments with moving and non-moving
crowds of pedestrians of varying densities. We were able
to show that the approach is applicable to large domains
and generalizes well from few expert demonstrations. In
particular, we showed that the approach enables a robot to
learn complex navigation behaviors of varying degrees of
social normativeness using the same basic set of features.

REFERENCES

[1] T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, “Human-aware robot
navigation: A survey,” Robotics and Autonomous Systems, June 2013.

[2] E. T. Hall, R. L. Birdwhistell, B. Bock, P. Bohannan, A. R. Diebold Jr,
M. Durbin, M. S. Edmonson, J. Fischer, D. Hymes, S. T. Kimball,
et al., “Proxemics,” Current anthropology, pp. 83–108, 1968.

[3] A. K. Pandey and R. Alami, “A framework for adapting social
conventions in a mobile robot motion in human-centered environment,”
in Int. Conf. on Advanced Robotics (ICAR), 2009.

[4] G. Ferrer, A. Garrell, and A. Sanfeliu, “Robot companion: A social-
force based approach with human awareness-navigation in crowded
environments,” in Int. Conf. on Intelligent Robots and Systems, 2013.

[5] P. Henry, C. Vollmer, B. Ferris, and D. Fox, “Learning to navigate
through crowded environments,” in Int. Conf. on Robotics and Au-
tomation (ICRA), Anchorage, Alaska, 2010.

[6] M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard, “Feature-
based prediction of trajectories for socially compliant navigation,” in
Proc. of Robotics: Science and Systems (RSS), 2012.

[7] D. Vasquez, B. Okal, and K. O. Arras, “Inverse reinforcement learning
algorithms and features for robot navigation in crowds: an experi-
mental comparison,” in Int. Conf. on Intelligent Robots and Systems
(IROS), Chicago, USA, 2014.

[8] B. Kim and J. Pineau, “Human-like navigation: Socially adaptive path
planning in dynamic environments,” in RSS W.shop on Inverse Optimal
Control and Learning from Demonstration, Berlin, Germany, 2013.

[9] A. G. Barto and R. S. Sutton, Reinforcement learning: An introduction.
MIT press, 1998.

[10] E. Sisbot, L. Marin-Urias, R. Alami, and T. Simeon, “A human
aware mobile robot motion planner,” IEEE Trans. on Robotics and
Automation (TRO), vol. 23, no. 5, Oct 2007.

[11] M. Svenstrup, T. Bak, and H. Andersen, “Trajectory planning for
robots in dynamic human environments,” in Int. Conf. on Intelligent
Robots and Systems (IROS), Taipei, Taiwan, 2010.

[12] D. V. Lu, D. B. Allan, and W. D. Smart, “Tuning cost functions for
social navigation,” in Social Robotics. Springer, 2013.

[13] G. Neumann, M. Pfeiffer, and W. Maass, “Efficient continuous-
time reinforcement learning with adaptive state graphs,” in European
Conf. on Machine Learning (ECML), Warsaw, Poland, 2007.

[14] C. Guestrin and D. Ormoneit, “Robust combination of local con-
trollers,” in Int. Conf. on Uncertainty in Artificial Intelligence (UAI),
Seattle, USA, 2001.

[15] D. Ramachandran and E. Amir, “Bayesian inverse reinforcement learn-
ing,” in Int. Joint Conf. on Artificial Intelligence (IJCAI), Hyderabad,
India, 2007.

[16] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement
learning.” in Int. Conf. on Machine Learning, Haifa, Israel, 2000.

[17] B. Okal, H. Gilbert, and K. O. Arras, “Efficient inverse reinforcement
learning using adaptive state-graphs,” in Learning from Demonstration
Workshop at Robotics: Science and Systems (RSS), Rome, Italy, 2015.

[18] L. Palmieri and K. O. Arras, “A novel RRT extend function for efficient
and smooth mobile robot motion planning,” in Int. Conf. on Intelligent
Robots and Systems (IROS), Chicago, USA, 2014.

[19] J. H. Metzen, “Learning graph-based representations for continuous
reinforcement learning domains,” in Machine Learning and Knowl-
edge Discovery in Databases, 2013, vol. 8188, pp. 81–96.

[20] A. G. Barto and S. Mahadevan, “Recent advances in hierarchical
reinforcement learning,” Discrete Event Dynamic Systems, vol. 13, no.
1-2, pp. 41–77, 2003.

[21] D. P. Bertsekas, Dynamic programming and optimal control. Athena
Scientific Belmont, MA, 1995, vol. 1, no. 2.

[22] B. Okal and K. O. Arras, “Towards group-level social activity recog-
nition for mobile robots,” in In IROS Assistance and Service Robotics
in a Human Environments Workshop, Chicago, USA, 2014.

[23] M. Moussaı̈d, N. Perozo, S. Garnier, D. Helbing, and G. Theraulaz,
“The walking behaviour of pedestrian social groups and its impact on
crowd dynamics,” PloS one, vol. 5, no. 4, 2010.

[24] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[25] T. Linder and K. O. Arras, “Multi-model hypothesis tracking of groups
of people in RGB-D data,” in IEEE Int. Conf. on Information Fusion
(FUSION’14), Salamanca, Spain, 2014.

